964 resultados para Analytical chemistry|Organic chemistry


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eugenol is an allyl chain-substituted guaiacol in the biosynthesized phenylpropanoid compound class derived from Syzygium aromaticum L. and widely used in folk medicine. Nonetheless, its pharmacological use is limited by some problems, such as instability when exposed to light and high temperature. In order to enhance stability, the eugenol molecule was structurally modified, resulting in eugenyl acetate. The eugenyl acetate`s thermal behavior and crystal structure was then characterized by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) and compared to a commercial sample.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with similar to 270 mu m, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 mu L of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/mu L., (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of lambda-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eugenol is the main volatile compound extracted oil from clove bud, Syzygium aromaticum L., and used in traditional medicine, as a bactericide, fungicide, anesthetic, and others. Its extraction was performed using hydrodistillation which is the most common extraction technique. Its components and thermal behavior were evaluated using gas chromatography (GC) and differential scanning calorimetry (DSC), which provide a better characterization of these natural compounds. This extracted product was compared to the standard eugenol results. The GC results suggested similar to 90% eugenol was found in the total extracted oil, and some of its boiling characteristics were 270.1 A degrees C for peak temperature and 244.1 J g(-1) for the enthalpy variation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study porcine skin and bovine pericardium were used as a source of type I collagen. Both were submitted to an alkaline treatment and mineralized by the alternate soaking method. Thermal stability and extent of mineralization have been investigated using DSC and TG. After alkaline hydrolysis there is a decrease in thermal stability but mineralization stabilizes collagen structure. Thermogravimetric data have shown that the amount of hydroxyapatite present in bovine pericardium matrix (45%) was greater than on porcine skin matrix (20%). Presence of hydroxyapatite was confirmed by EDX.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Asthma is a significant health issue in the pediatric population with a noteworthy growth over the years. The proposed challenge for this PhD thesis was the development of advanced methodologies to establish metabolomic patterns in urine and exhaled breath associated with asthma whose applicability was subsequently exploited to evaluate the disease state, the therapy adhesion and effect and for diagnostic purposes. The volatile composition of exhaled breath was studied combining headspace solid phase microextraction (HS-SPME) with gas chromatography coupled to mass spectrometry or with comprehensive two-dimensional gas chromatography coupled to mass spectrometry with a high resolution time of flight analyzer (GC×GC–ToFMS). These methodologies allowed the identification of several hundred compounds from different chemical families. Multivariate analysis (MVA) led to the conclusion that the metabolomic profile of asthma individuals is characterized by higher levels of compounds associated with lipid peroxidation, possibly linked to oxidative stress and inflammation (alkanes and aldehydes) known to play an important role in asthma. For future applications in clinical settings a set of nine compounds was defined and the clinical applicability was proven in monitoring the disease status and in the evaluation of the effect and / or adherence to therapy. The global volatile metabolome of urine was also explored using an HSSPME/GC×GC–ToFMS method and c.a. 200 compounds were identified. A targeted analysis was performed, with 78 compounds related with lipid peroxidation and consequently to oxidative stress levels and inflammation. The urinary non-volatile metabolomic pattern of asthma was established using proton nuclear magnetic resonance (1H NMR). This analysis allowed identifying central metabolic pathways such as oxidative stress, amino acid and lipid metabolism, gut microflora alterations, alterations in the tricarboxylic acid (TCA) cycle, histidine metabolism, lactic acidosis, and modification of free tyrosine residues after eosinophil stimulation. The obtained results allowed exploring and demonstrating the potential of analyzing the metabolomic profile of exhaled air and urine in asthma. Besides the successful development of analysis methodologies, it was possible to explore through exhaled air and urine biochemical pathways affected by asthma, observing complementarity between matrices, as well as, verify the clinical applicability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we study the photosynthetic induction in Eucalyptus urograndis leaves using the Open Photoacoustic Cell Technique. In vivo and in situ measurements were performed in leaves of four months-old E. urograndis seedlings and C041 cuttings previously dark-adapted for at least 10 h. Experimental results for the gas exchange component of the photoacoustic (PA) signal are interpreted considering that a gas uptake component would have a phase angle nearly opposite to that of the oxygen evolution component. Analysis of the photosynthetic induction data shows that seedlings present a net oxygen evolution before cuttings, but cuttings reach a higher steady-state photosynthetic activity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A sensitive flow-injection (FI) procedure with spectrophotometric detection in a micellar medium is proposed for the determination of novalgin. The method is based on the instantaneous formation of a red-orange product (lambda(max) = 510 nm) after the reaction between novalgin and p-dimethylaminocinnamaldehyde (p-DAC) in a dilute acid medium. The sensitivity of this reaction was increased by a factor of 5.6 in the presence of sodium dodecyl sulfate (SDS). Experimental design methodologies were used to optimize the chemical and FI variables. The calibration curve was linear in the range of 1.45 x 10(-6) to 2.90 x 10(-5) mol L-1 with an excellent correlation coefficient (r = 0.9999). The detection limit was 1.31 x 10(-7) mol L-1 (n = 20, RSD = 2.0%). No interferences were observed from the common excipients. The results obtained by the proposed method were favorably compared with those given by the iodometric reference method at 95% confidence level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAHs) constitute a family of compounds characterized by having two or more condensed aromatic rings and for being a class of substances that are widely distributed in the environment as a complex mixture, being very persistent in the environment due to its low solubility in water. The application of chemometric methods to analytical chemistry has provided excellent results in studying the solubility of PAHs in aqueous media in order to understand the mechanisms involved in environmental contamination. The method consists in analyzing the solubilization of PAHs from diesel oil in water varying parameters such as stirring time, volume of oil added and pH, using a full factorial design of two levels and three factors. PAHs were extracted with n-hexane and analyzed by fluorescence spectroscopy because they have molecular characteristics fluorescent due to the large number of condensed rings and links, and gas chromatography coupled to a mass spectrometer (GC-MS). The results of fluorescence analysis showed that only the stirring time and pH influenced the solubility of PAHs in diesel fuel. How is a non-selective technique for the study of fluorescence was performed on form and semi-quantitative. And for the chromatographic analysis the results showed that the solubility of the different PAHs is influenced differently so that you can classify them into groups by the results of the effects

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tungsten coil atomic emission spectrometry is an ideal technique for field applications because of its simplicity, low cost, low power requirement, and independence from cooling systems. A new, portable, compact design is reported here. The tungsten coil is extracted from an inexpensive 24 V, 250 W commercial light bulb. The coil is housed in a small, aluminum cell. The emission signal exits from a small aperture in the cell, while the bulk of the blackbody emission from the tungsten coil is blocked. The resulting spectra exhibit extremely low background signals. The atomization cell, a single lens, and a hand-held charge coupled device (CCD) spectrometer are fixed on a 1 x 6 x 30 cm ceramic base. The resulting system is robust and easily transported. A programmable, miniature 400 W solid-state constant current power supply controls the temperature of the coil. Fifteen elements are determined with the system (Ba, Cs, Li, Rb, Cr, Sr, Eu, Yb, Mn, Fe, Cu, Mg, V, Al, and Ga). The precision ranges from 4.3% to 8.4% relative standard deviation for repetitive measurements of the same solution. Detection limits are in the 0.04 to 1500 mu g/L range. Accuracy is tested using standard reference materials for polluted water, peach leaves, and tomato leaves. For those elements present above the detection limit, recoveries range from 72% to 147%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fast, selective, reproducible and reliable detections have been carried out by using enzymatic biosensors in several areas. The enzymatic biosensors based on the inhibition represent an important role in analytical chemistry. Enzymes like cholinesterases, peroxidases, tyrosinases, etc. have been immobilized on electrochemical and optical transducers and the enzymatic activity decreasing in the presence of the inhibitor is related with its concentrations. This article presents a review on the enzymes used on the construction of these sensors, emphasizing the respective applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel material for electrochemical biosensing based on rigid conducting gold nanocomposite (nano-AuGEC) is presented. Islands of chemisorbing material (gold nanoparticles) surrounded by nonreactive, rigid, and conducting graphite epoxy composite are thus achieved to avoid the stringent control of surface coverage parameters required during immobilization of thiolated oligos in continuous gold surfaces. The spatial resolution of the immobilized thiolated DNA was easily controlled by merely varying the percentage of gold nanoparticles in the composition of the composite. As low as 9 fmol (60 pM) of synthetic DNA were detected in hybridization experiments when using a thiolated probe. Moreover, for the first time a double tagging PCR strategy was performed with a thiolated primer for the detection of Salmonella sp., one of the most important foodborne pathogens affecting food safety. Ibis assay was performed by double-labeling the amplicon during the PCR with a -DIG and -SH set of labeled primers. The thiolated end allows the immobilization of the amplicon on the nano-AuGEC electrode, while digoxigenin allows the electrochemical detection with the antiDIG-HRP reporter in the femtomole range. Rigid conducting gold nanocomposite represents a good material for the improved and oriented immobilization of biomolecules with excellent transducing properties for the construction of a wide range of electrochemical biosensors such as immunosensors, genosensors, and enzymosensors.