887 resultados para Amorphous selenium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was conducted to observe the laser processing effects on the magnetic properties of amorphous wires. Weekly interacting heterogeneous structures with different magnetic properties were formed by the local annealing by argon laser. Favourable changes were observed due to the creation of local stresses and structural interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactions of directly related tellurium and selenium heterocyclic compounds with triiron dodecacarbonyl are described. The reaction of 2-telluraphthalide, C8H8OTe with [Fe3(CO)12 gave [Fe{C6H4(CH2)Te}(CO)3]2, (1). An iron atom has inserted into the telluracyclic ring, and it is probable that one co-ordinated CO ligand arises from the initially organic carbonyl group. X-ray analysis of compound (1) showed that the compound has a Fe2Te2 core, which is achieved by dimerisation. The reaction of telluraphthalic anhydride, C8H402Te with [Fe3(CO)12] gave a known, but unexpected, organic phthalide product, C8H602, which was confirmed by X-ray crystallography. Selenaphthalic anhydride,  C8H4O2Se gave intractable products on reaction with [Fe3(CO)12], 2-selenaphthalide, C8H6OSe, on reaction with [Fe3(CO)12] gave a major product [Fe2{C6H4(CH2)Se}(CO)6], (2) and a minor product [Fe3{C6H4(CH2)Se}(CO)8], (3) which is an intermediate in the formation of (2). X-ray analysis of (2) shows that compound (2) is very similar to (1) except that the 18 electron rule is satisfied by co-ordination of a Fe(CO)3 moiety, rather than dimerisation. Compound (3), also studied by X-ray crystallography, differs from (2) mainly in the addition of an Fe(CO)2 moiety. Telluraphtbalic anhydride, C8H402Te, and selenaphthalic anhydride, C8H402Se, are both monoclinic and crystallise in space group P21/n. 2-Selenaphthalide, C8H402Se, is also monoclinic, space group P21/C. The reactions of the following compounds (l,3-dihydrobenzo[c]selenophene, 1,3,7,9-tetrahydrobenzo[1,2c; 4,5c'] ditellurophene, dibenzoselenophene, phenoxselenine, 3, 5-naphtho-1-telluracyclohexane and 3,5-naphtho-1-selenacyclohexane) with [Fe3lCO)12] are reported. It is unfortunate that the above compounds do not react under the conditions employed; this may be due to differing degrees of ring strain. 1,8-bis(bromomethyl)naphthalene, C12H10Br2 is monoclinic and crystallises in space group C2/c. 1,1-diiodo-3,5-naphthotelluracyclohexane, C12H10TeI2 and 3,5-naphtho-l-telluracyclohexane, C12H10Te are monoclinic and crystallise in space group P21/c. 3,5-naphtho-l-selenacyclohexane, C12H10Se and 2,2,8,8-tetraiodo-1,3,7,9-tetrahydrobenzo[1,2c;4,5c']ditellurophene are also monoclinic, space group P21/a. The syntheses of intramolecular stabilised organo-tellurium and selenium compounds are reported, having a general formula of REX (where R = phenylazophenyl; E = Se, Te; X = electronegative group, for example C1, Br or I). The crystal structures of R'TeBr, RTeI, RSeCI, RSeCI/I and RSeI (where R = phenylazophenyl) are reported. The tellurium containing X-ray structures are triclinic and have a space group P-1. The selenium containing X-ray structures are monoclinic with space group P21/n. The inclusion of nitrogen in selenium heterocycles provides access to an entirely new area of organometallic chemistry. The reaction of 2-methylbenzoselenazole with [Fe3(CO)12] gave [Fe2{C6H4(NCH2CH3)Se}(CO)6]. The reactions of 2-(methyltelluro)benzanilide or 2-(methylseleno)benzanilide with [Fe3(CO)12] gave reaction products [Fe2(μTeMe)2(CO)6] and [Fe2 (μ-SeMe)2(CO)6] respectively, which were confmned by X-ray crystallography. The use of Mossbauer spectroscopy on the products obtained from the reactions of heterocyclic compounds with [Fe3(CO)12] can give useful information, for example the number of iron sites and the environments of these iron sites within the products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films of amorphous silicon (a-Si) were prepared by r.f. sputtering in a Ne plasma without the addition of hydrogen or a halogen. The d.c. dark electrical conductivity, he optical gap and the photoconductivity of the films were investigated for a range of preparation conditions, the sputtering gas pressure, P, the target-substrate spacing, d, the self-bias voltage, Vsb, on the target and the substrate temperature, Ts. The dependence of the electrical and optical properties on these conditions showed that various combinations of P, d and Vsb, at a constant Ts, giving the same product (Pd/V sb) result in films with similar properties, provided that P, d and Vsb remain vithin a certain range. Variation of Pd/Vsb between about 0.2 and 0.8 rrTorr.cm!V varied the dark conductivity over about 4 orders of magnitude, the optical gap by 0.5 eV and the photoconductivity over 4-5 orders of magnitude. This is attributed to controlling the density-of-states distribution in the mobility gap. The temperature-dependence of photoconductivity and the photoresponse of undoped films are in support of this conclusion. Films prepared at relatively high (Pd/Vsb) values and Ts=300 ºc: exhibited low dark-conductivity and high thermal activation energy, optical gap and photoresponse, characteristic properties of a 'low density-of-states material. P-type doping with group-Ill elements (Al, B and Ga) by sputtering from a composite target or from a predoped target (B-.doped) was investigated. The systematic variation of room-temperature conductivity over many orders of magnitude and a Fermi-level shift of about 0.7 eV towards the valence-band edge suggest that substitutional doping had taken place. The effects of preparation conditions on doping efficiency were also investigated. The post-deposition annealing of undoped and doped films were studied for a temperature range from 250 ºC to 470 ºC. It was shown that annealing enhanced the doping efficiency considerably, although it had little effect on the basic material (a-Si) prepared at the optimum conditions (Pd/Vsb=0.8 mTorr.cm/V and Ts=300 $ºC). Preliminary experiments on devices imply potential applications of the present material, such as p-n and MS junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is dedicated to the production and analysis of thin hydrogenated amorphous carbon films. A cascaded arc plasma source was used to produce a high density plasma of hydrocarbon radicals that deposited on a substrate at ultra low energies. The work was intended to create a better understanding of the mechanisms responsible for the film formation, by an extensive analysis on the properties of the films in correlation with the conditions used in the plasma cell. Two different precursors were used: methane and acetylene. They revealed a very different picture for the mechanism of film formation and properties. Methane was less successful, and the films formed were soft, with poor adhesion to the substrate and decomposing with time. Acetylene was the better option, and the films formed in this case were harder, with better adhesion to the substrate and stable over time. The plasma parameters could be varied to change the character of films, from polymer-like to diamond-like carbon. Films deposited from methane were grown at low deposition rates, which increased with the increase in process pressure and source power and decreased with the increase in substrate temperature and in hydrogen fraction in the carrier gas. The films had similar hydrogen content, sp3 fractions, average roughness (Ra) and low hardness. Above a deposition temperature of 350°C graphitization occurred - an increase in the sp2 fraction. A deposition mechanism was proposed, based upon the reaction product of the dissociative recombination of CH4+. There were small differences between the chemistries in the plasma at low and high precursor flow rates and low and high substrate temperatures; all experimental conditions led to formation of films that were either polymer-like, soft amorphous hydrogenated carbon or graphitic-like in structure. Films deposited from acetylene were grown at much higher deposition rates on different substrates (silicon, glass and plastics). The film quality increased noticeably with the increase of relative acetylene to argon flow rate, up to a certain value, where saturation occurred. With the increase in substrate temperature and the lowering of the acetylene injection ring position further improvements in film quality were achieved. The deposition process was scaled up to large area (5 x 5 cm) substrates in the later stages of the project. A deposition mechanism was proposed, based upon the reaction products of the dissociative recombination of C2H2 +. There were large differences between the chemistry in the plasma at low and medium/high precursor flow rates. This corresponded to large differences in film properties from low to medium flow rates, when films changed their character from polymer-like to diamond-like, whereas the differences between films deposited at medium and high precursor flow rates were small. Modelling of the film growth on silicon substrates was initiated and it explained the formation of sp2 and sp3 bonds at these very low energies. However, further improvements to the model are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt quenched silicate glasses containing calcium, phosphorous and alkali metals have the ability to promote bone regeneration and to fuse to living bone. These glasses, including 45S5 Bioglass(A (R)) [(CaO)(26.9)(Na2O)(24.4)(SiO2)(46.1)(P2O5)(2.6)], are routinely used as clinical implants. Consequently there have been numerous studies on the structure of these glasses using conventional diffraction techniques. These studies have provided important information on the atomic structure of Bioglass(A (R)) but are of course intrinsically limited in the sense that they probe the bulk material and cannot be as sensitive to thin layers of near-surface dissolution/growth. The present study therefore uses surface sensitive shallow angle X-ray diffraction to study the formation of amorphous calcium phosphate and hydroxyapatite on Bioglass(A (R)) samples, pre-reacted in simulated body fluid (SBF). Unreacted Bioglass(A (R)) is dominated by a broad amorphous feature around 2.2 A...(-1) which is characteristic of sodium calcium silicate glass. After reacting Bioglass(A (R)) in SBF a second broad amorphous feature evolves similar to 1.6 A...(-1) which is attributed to amorphous calcium phosphate. This feature is evident for samples after only 4 h reacting in SBF and by 8 h the amorphous feature becomes comparable in magnitude to the background signal of the bulk Bioglass(A (R)). Bragg peaks characteristic of hydroxyapatite form after 1-3 days of reacting in SBF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectroscopic pump-probe reflectance method was used to investigate recombination dynamics in samples of nanocrystalline silicon embedded in a matrix of hydrogenated amorphous silicon. We found that the dynamics can be described by a rate equation including linear and quadratic terms corresponding to recombination processes associated with impurities and impurity-assisted Auger ionization, respectively. We determined the values of the recombination coefficients using the initial concentrations method. We report the coefficients of 1.5 × 1011 s-1 and 1.1 × 10-10 cm3 s-1 for the impurity-assisted recombination and Auger ionization, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly sensitive and selective detection of volatile organic compounds (VOCs) with fast response time is imperative based on safety requirements, yet often remains a challenge. Herein, we propose an effective solution, preparing a novel gas sensor comprised of amorphous nanoflake arrays (a-NFAs) with specific surface groups. The sensor was produced via an extremely simple process in which a-NFAs of CdO were deposited directly onto an interdigital electrode immersed in a chemical bath under ambient conditions. Upon exposure to a widely used VOC, diethyl ether (DEE), the sensor exhibits excellent performance, more specifically, the quickest response, lowest detection limit and highest selectivity ever reported for DEE as a target gas. The superior gas-sensing properties of the prepared a-NFAs are found to arise from their open trumpet-shaped morphology, defect-rich amorphous nature, and surface CO groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selenium is known to occur in the enzyme, glutathione peroxidase, and plays an important role as an antioxidant. The objective of this investigation was to determine if amounts of selenium are selectively accumulated in different regions of the retina or uniformly distributed with eccentricity. 20 human retinas were analyzed for selenium. 18 of these were sectioned into a disc and two concentric annuli centered on the fovea using trephines having diameters of 3, 11, and 21 mm. The sections had areas of7.1, 93, and 343 mm2, respectively. Corresponding sections of these retinas were combined and analyzed together in sets of n = 5 and n = 11. For two donors, the whole retina of one eye was analyzed for selenium and the other retina was sectioned for analysis as described above. Selenium was determined using atomic fluorescence spectroscopy after digestion of the retinal tissues in nitric acid. The two whole retinas were found to have an average of 0.89 ± 0.49 pmoles/mm2 of selenium as compared to the companion which had 0.84 ± 0.28 pmoles/mm2 as determined from the sum of the selenium amounts measured in the individual sections. The inner, medial, and outer portions of these two sectioned retinas were found to contain an average of5.28 ± 1.1, 1.28 ± 0.44, 0.63 ± 0.22 pmoles/mm2, respectively. The five retinas that were sectioned and pooled for analysis were found to have average amounts of3.64, 1.26, and 0.56 pmoles/mm2 • The 11-sectioned retinas were found to have 1.16, 0.61, and 0.38 pmoles/mm2 respectively in the same three sections. This limited data set indicates that selenium is not uniformly distributed within the human retina but rather concentrated to a greater extent within the macula. If confirmed, these data would support the hypothesis that selenium may be an important antioxidant involved in protection of the macula from radical oxidants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical barrier zones play an important role in determining various physical systems and characteristics of oceans, e.g. hydrodynamics, salinity, temperature and light. In the book each of more than 30 barrier zones are illustrated and defined by physical, chemical and biological parameters. Among the topics discussed are processes of inflow, transformation and precipitation of the sedimentary layer of the open oceans and more restricted areas such as the Baltic, Black and Mediterranean Seas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acknowledgements The authors are grateful to Junta de Comunidades de Castilla-La Mancha (PCC-05-004-2, PAI06-0094, PCI-08-0096, PEII09-0032-5329) and the Ministerio de Economía y Competitividad (CTQ2013-48411-P) for financial support. M.J. Patiño Ropero acknowledges the Junta de Comunidades de Castilla-La Mancha for her PhD. fellowship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100–150 °C) might be the best choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we use a model of hydrogenated amorphous silicon generated from molecular dynamics with density functional theory calculations to examine how the atomic geometry and the optical and mobility gaps are influenced by mild hydrogen oversaturation. The optical and mobility gaps show a volcano curve as the hydrogen content varies from undersaturation to mild oversaturation, with largest gaps obtained at the saturation hydrogen concentration. At the same time, mid-gap states associated with dangling bonds and strained Si-Si bonds disappear at saturation but reappear at mild oversaturation, which is consistent with the evolution of optical gap. The distribution of Si-Si bond distances provides the key to the change in electronic properties. In the undersaturation regime, the new electronic states in the gap arise from the presence of dangling bonds and strained Si-Si bonds, which are longer than the equilibrium Si-Si distance. Increasing hydrogen concentration up to saturation reduces the strained bonds and removes dangling bonds. In the case of mild oversaturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structure shows that the extra hydrogen atoms form a bridge between neighbouring silicon atoms, thus increasing the Si-Si distance and increasing disorder in the sample.