886 resultados para Aluminium chloride
Resumo:
The aim of this preliminary study was to verify the antibacterial potential of cetylpyridinium chloride (CPC) in root canals infected by Enterococcus faecalis. Forty human maxillary anterior teeth were prepared and inoculated with E. faecalis for 60 days. The teeth were randomly assigned to the following groups: 1: Root canal preparation (RCP) + 0.1% CPC with positive-pressure irrigation (PPI, Conventional, NaviTip®); 2: RCP + 0.2% CPC PPI; 3: RCP + 2.5% NaOCl PPI; 4: RCP + 2.5% NaOCl with negative-pressure irrigation system (NPI, EndoVac®); 5: Positive control; and 6: Negative control. Four teeth of each experimental group were evaluated by culture and 4 by scanning electron microscopy (SEM). In all teeth, the root canals were dried and filled with 17% EDTA (pH 7.2) for 3 min for smear layer removal. Samples from the infected root canals were collected and immersed in 7 mL of Letheen Broth (LB), followed by incubation at 37°C for 48 h. Bacterial growth was analyzed by turbidity of culture medium and then observed with a UV spectrophotometer. The irrigating solutions were further evaluated for antimicrobial effect by an agar diffusion test.The statistical data were treated by means, standard deviation, Kruskal-Wallis test and analysis of variance. Significance level was set at 5%. The results showed the presence of E. faecalis after root canal sanitization. The number of bacteria decreased after the use of CPC. In the agar diffusion test, CPC induced large microbial inhibition zones, similar to 2% chlorhexidine and large than 2.5% NaOCl. In conclusion, cetylpyridinium chloride showed antibacterial potential in endodontic infection with E. faecalis.
Resumo:
Zielsetzung ist der synthetische Zugang zu metallorganischen Verbindungen, die Propylenoxid koordinativ polymerisieren und deren Aktivität sich durch gezielte Variation der sterischen oder elektronischen Eigenschaften kontrollieren läßt. Zur Bearbeitung dieser Aufgabe werden zwei verschiedene Klassen von Komplexen synthetisiert und charakterisiert: Vorwiegend durch Salzmetathese werden mehrere Yttriumamide der allgemeinen Formel Y(NRR´)3(THF)x erhalten. Dabei erfolgt eine Diskussion der Auswirkungen sterischer und elektronischer Variation der beiden Amido-Substituenten R und R´, die sich in der Bildung von at-Komplexen, Lösungsmitteladdukten und größeren Aggregaten äußern. Durch Alkaneliminierung wird eine umfassende Reihe von Aluminiumkomplexen methylen- und thioverbrückter Bisphenolatoliganden dargestellt. Die Verbindungen besitzen unter Ausschluß zusätzlicher Basen dimere oder mehrkernige Strukturen, deren Diskussion schwerpunktsmäßig anhand ihres Verhaltens in Lösung erfolgt. Die Aluminiumkomplexe werden in anschließenden Reaktionen zu Lösungsmitteladdukten und Aluminaten umgesetzt.Die Yttriumamide initiieren die Ringöffnungspolymerisation von Propylenoxid bei Temperaturen von 60 oder 80 °C. Die Polymerisation erfolgt nach einem koordinativen Mechanismus, eine zu niedrige Katalysatoreffizienz schließt jedoch die Yttriumamide als Vorläufer zu definierten single site-Katalysatoren aus. Mit der Kombination aus neutralen Aluminiumkomplexen mit den entsprechenden Aluminaten verläuft die Ringöffnungspolymerisation von Propylenoxid bei Raumtemperatur schnell und kontrolliert. Es läßt sich ein prinzipiell neuer Mechanismus belegen, bei dem die Polymerisation unter synergistischer Wirkung eines Aluminiumphenolato-Komplexes mit dem korrespondierenden at-Komplex erfolgt.
Resumo:
Extrusion is a process used to form long products of constant cross section, from simple billets, with a high variety of shapes. Aluminum alloys are the materials most processed in the extrusion industry due to their deformability and the wide field of applications that range from buildings to aerospace and from design to automotive industries. The diverse applications imply different requirements that can be fulfilled by the wide range of alloys and treatments, that is from critical structural application to high quality surface and aesthetical aspect. Whether one or the other is the critical aspect, they both depend directly from microstructure. The extrusion process is moreover marked by high deformations and complex strain gradients making difficult the control of microstructure evolution that is at present not yet fully achieved. Nevertheless the evolution of Finite Element modeling has reached a maturity and can therefore start to be used as a tool for investigation and prediction of microstructure evolution. This thesis will analyze and model the evolution of microstructure throughout the entire extrusion process for 6XXX series aluminum alloys. Core phase of the work was the development of specific tests to investigate the microstructure evolution and validate the model implemented in a commercial FE code. Along with it two essential activities were carried out for a correct calibration of the model beyond the simple research of contour parameters, thus leading to the understanding and control of both code and process. In this direction activities were also conducted on building critical knowhow on the interpretation of microstructure and extrusion phenomena. It is believed, in fact, that the sole analysis of the microstructure evolution regardless of its relevance in the technological aspects of the process would be of little use for the industry as well as ineffective for the interpretation of the results.
Resumo:
MFA and LCA methodologies were applied to analyse the anthropogenic aluminium cycle in Italy with focus on historical evolution of stocks and flows of the metal, embodied GHG emissions, and potentials from recycling to provide key features to Italy for prioritizing industrial policy toward low-carbon technologies and materials. Historical trend series were collected from 1947 to 2009 and balanced with data from production, manufacturing and waste management of aluminium-containing products, using a ‘top-down’ approach to quantify the contemporary in-use stock of the metal, and helping to identify ‘applications where aluminium is not yet being recycled to its full potential and to identify present and future recycling flows’. The MFA results were used as a basis for the LCA aimed at evaluating the carbon footprint evolution, from primary and electrical energy, the smelting process and the transportation, embodied in the Italian aluminium. A discussion about how the main factors, according to the Kaya Identity equation, they did influence the Italian GHG emissions pattern over time, and which are the levers to mitigate it, it has been also reported. The contemporary anthropogenic reservoirs of aluminium was estimated at about 320 kg per capita, mainly embedded within the transportation and building and construction sectors. Cumulative in-use stock represents approximately 11 years of supply at current usage rates (about 20 Mt versus 1.7 Mt/year), and it would imply a potential of about 160 Mt of CO2eq emissions savings. A discussion of criticality related to aluminium waste recovery from the transportation and the containers and packaging sectors was also included in the study, providing an example for how MFA and LCA may support decision-making at sectorial or regional level. The research constitutes the first attempt of an integrated approach between MFA and LCA applied to the aluminium cycle in Italy.
Resumo:
This study comprised batch experiments, direct speciation studies via EXAFS, and modelling with the 2SPNE SC/CE model to elucidate the mechanisms of Np(V) sorption on montmorillonite and, for reference, on γ-Al2O3. The sorption of pM 239Np(V) and µM 237Np(V) on montmorillonite (STx-1, 4 g/L) and γ-Al2O3 (0.5 g/L) was studied at room temperature in the presence and absence of ambient CO2 covering a pH-range from 2.5 (STx-1) or 5 (γ-Al2O3) to 10.5 with 0.01 or 0.1M NaClO4 as background electrolyte. The Np(V) uptake was determined by γ spectroscopy of the supernatants and calculated as percentage as well as distribution coefficient Kd. Sorption starts from pH ~6 and, under exclusion of CO2, increases continuously, while, in the presence of ambient air, it reaches a maximum at pH ~8.5 (γ-Al2O3: log Kd max ≈ 4 mL/g; STx-1: log Kd max ≈ 2.7 mL/g). Beyond that it decreases again due to the formation of queous neptunium carbonate complexes. Furthermore, neptunium sorption on montmorillonite is influenced by ionic strength at pH <6 through ion exchange processes pointing towards the formation of outer-sphere surface complexes there. Isotherms measured at the sorption maximum showed the precipitation of resumably neptunium carbonate complexes above 3∙10^-5 M under ambient air conditions. Additionally, they indicated progressive saturation of the sorption sites of γ-Al2O3. At selected pH (STx-1: 5.0, 7.0, 8.0, 8.5, 9.0, 9.5; γ-Al2O3: 8.5, 9.5) EXAFS samples were prepared as wet pastes with µM 237Np and measured at room temperature in fluorescence mode at ANKA and ESRF. Several spectra were averaged and analysed with EXAFSPAK and FEFF 8.20 employing models of NaNpO2(CO3) or soddyite, (UO2)2SiO4∙2(H2O). The shorter atomic distances of the neptunyl ion at pH 5 compared to the others hinted at the retention of the hydration shell and, thus, at outer-sphere sorption. On average the bond lengths for Np(V) sorbed on STx-1 at high pH were Oax ≈ 1.84 Å and Oeq ≈ 2.53 Å. At high pH, ternary neptunyl carbonate surface complexes could be identified for montmorillonite (C ≈ 3.00 Å), but not for γ-Al2O3, where an interaction of neptunium with the aluminium surface atoms according to the soddyite model gave better agreement with the experimental data. However, neither structure as suggested by the two models could be excluded for both systems rendering a combination most likely. Modelling of the sorption data provided further evidence for the existence of ternary neptunium carbonate surface complexes in both cases. The results of this study can aid environmental risk assessment for clay-based nuclear waste repositories by providing valuable input data for simulations of radionuclide migration from a final disposal site.
Resumo:
Ziel dieser Arbeit ist die Untersuchung der Einflüsse von Blister-Design und Folienqualität auf die Funktionalität von Blisterverpackungen. Hierzu werden analytische Methoden mittels Interferometrie, IR-Spektroskopie, Betarückstreuverfahren, Wirbelstromverfahren und Impedanzspektroskopie entwickelt, die zur quantitativen Bestimmung von Heißsiegellacken und Laminatbeschichtungen von Aluminium-Blisterfolien geeignet sind. Ein Vergleich der Methoden zeigt, dass sich das Betarückstreuverfahren, die Interferometrie und IR-Messungen für die Heißsiegellackbestimmung, die Interferometrie und das Wirbelstromverfahren für die Bestimmung von Kunststofflaminaten eignen.rnIm zweiten Abschnitt der Arbeit werden Einflüsse des Heißsiegellack-Flächengewichtes von Deckfolien auf die Qualität von Blisterverpackungen untersucht. Mit Zunahme des Flächengewichtes zeigt sich eine Erhöhung der Siegelnahtfestigkeit aber auch der Wasserdampfdurchlässigkeit von Blistern. Die untersuchten Heißsiegellacke zeigen Permeationskoeffizienten vergleichbar mit Polyvinylchlorid. In Untersuchungen zur Siegelprozessvalidität zeigt das Heißsiegellack-Flächengewicht nur geringfügige Auswirkungen auf diese. rnIm dritten Abschnitt der Arbeit werden Einflüsse des Blister-Designs auf die Benutzerfreundlichkeit von Blisterverpackungen durch eine Handlingstudie untersucht. Variationen der Öffnungskräfte von Durchdrück-Blistern wirken sich deutlich auf die Bewertungen der Blister durch die Probanden aus. Während die meisten Probanden alle getesteten Durchdrück-Blister innerhalb der Testdauer von 4 Minuten öffnen können (>84%), treten beim Peel-Blister und Peel-off-push-through-Blister deutlich mehr Handlingprobleme auf. Die Handlingprobleme korrelieren mit dem Alter, der Lebenssituation, der gesundheitlichen Verfassung und der Sehfähigkeit der Probanden. rn
Resumo:
This thesis work encloses activities carried out in the Laser Center of the Polytechnic University of Madrid and the laboratories of the University of Bologna in Forlì. This thesis focuses on the superficial mechanical treatment for metallic materials called Laser Shock Peening (LSP). This process is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses underneath the surface of metal components in order to improve the detrimental effects of the crack growth behavior rate in it. The innovation aspect of this work is the LSP application to specimens with extremely low thickness. In particular, after a bibliographic study and comparison with the main treatments used for the same purposes, this work analyzes the physics of the operation of a laser, its interaction with the surface of the material and the generation of the surface residual stresses which are fundamentals to obtain the LSP benefits. In particular this thesis work regards the application of this treatment to some Al2024-T351 specimens with low thickness. Among the improvements that can be obtained performing this operation, the most important in the aeronautic field is the fatigue life improvement of the treated components. As demonstrated in this work, a well-done LSP treatment can slow down the progress of the defects in the material that could lead to sudden failure of the structure. A part of this thesis is the simulation of this phenomenon using the program AFGROW, with which have been analyzed different geometric configurations of the treatment, verifying which was better for large panels of typical aeronautical interest. The core of the LSP process are the residual stresses that are induced on the material by the interaction with the laser light, these can be simulated with the finite elements but it is essential to verify and measure them experimentally. In the thesis are introduced the main methods for the detection of those stresses, they can be mechanical or by diffraction. In particular, will be described the principles and the detailed realization method of the Hole Drilling measure and an introduction of the X-ray Diffraction; then will be presented the results I obtained with both techniques. In addition to these two measurement techniques will also be introduced Neutron Diffraction method. The last part refers to the experimental tests of the fatigue life of the specimens, with a detailed description of the apparatus and the procedure used from the initial specimen preparation to the fatigue test with the press. Then the obtained results are exposed and discussed.
Resumo:
Microalgae have been studied because of their great potential as a source of new compounds with important value for biotechnology and to understand their strategies of survival in extreme environments. The microalgae Coccomyxa sp., studied in this thesis, is a poly-extremophile witch was isolated from the acid mine drainage of S. Domingos mine. This environment is characterized by low pH (<3) and high concentration of metals, such as copper and iron. The main purpose of the present work was to evaluate the potential bioactivity in an ex-vivo animal model (Fundulus heteroclitus), and expression on selected genes, of cellular extracts obtained from cultures of Coccomyxa sp. at pH 7 without or with exposure to copper (0.6mM Cu²+). The extracts of Coccomyxa sp. cultured at pH 7 exposed to copper show a great potential to be used as epithelial NKCC inhibitors, revealing their potential use as diuretics, but did not show significant effects on gene expression. Coccomyxa sp. could be a good source of cellular extracts with a great potential to be used in pharmaceutical and biotechnology industries.
Resumo:
The research activities were focused on evaluating the effect of Mo addition to mechanical properties and microstructure of A354 aluminium casting alloy. Samples, with increasing amount of Mo, were produced and heat treated. After heat treatment and exposition to high temperatures samples underwent microstructural and chemical analyses, hardness and tensile tests. The collected data led to the optimization of both casting parameters, for obtaining a homogeneous Mo distribution in the alloy, and heat treatment parameters, allowing the formation of Mo based strengthening precipitates stable at high temperature. Microstructural and chemical analyses highlighted how Mo addition in percentage superior to 0.1% wt. can modify the silicon eutectic morphology and hinder the formation of iron based β intermetallics. High temperature exposure curves, instead, showed that after long exposition hardness is slightly influenced by heat treatment while the effect of Mo addition superior to 0,3% is negligible. Tensile tests confirmed that the addition of 0.3%wt Mo induces an increase of about 10% of ultimate tensile strength after high temperature exposition (250°C for 100h) while heat treatments have slight influence on mechanical behaviour. These results could be exploited for developing innovative heat treatment sequence able to reduce residual stresses in castings produced with A354 modified with Mo.
Resumo:
The aim of this study was to evaluate the anti-erosive effects of different fluoride compounds and one tin compound in the context of the complex pathohistology of dentine erosion, with particular emphasis on the role of the organic portion. Samples were subjected to two experiments including erosive acid attacks (0.05 molar citric acid, pH 2.3; 6 x 2 min/day) and applications (6 x 2 min/day) of the following test solutions: SnCl(2) (815 ppm Sn), NaF (250 ppm F), SnF(2) (250 ppm F, 809 ppm Sn), amine fluoride (AmF, 250 ppm F), AmF/NaF (250 ppm F), and AmF/SnF(2) (250 ppm F, 409 ppm Sn). The demineralised organic fraction was enzymatically removed either at the end of the experiment (experiment 1) or continuously throughout the experiment (experiment 2). Tissue loss was determined profilometrically after 10 experimental days. In experiment 1, the highest erosive tissue loss was found in the control group (erosion only); the AmF- and NaF-containing solutions reduced tissue loss by about 60%, reductions for SnCl(2), AmF/SnF(2), and SnF(2) were 52, 74 and 89%, respectively. In experiment 2, loss values generally were significantly higher, and the differences between the test solutions were much more distinct. Reduction of tissue loss was between 12 and 34% for the AmF- and NaF-containing preparations, and 11, 67 and 78% for SnCl(2), AmF/SnF(2), and SnF(2), respectively. Stannous fluoride-containing solutions revealed promising anti-erosive effects in dentine. The strikingly different outcomes in the two experiments suggest reconsidering current methodologies for investigating anti-erosive strategies in dentine.
Resumo:
Cystic fibrosis (CF), a common lethal inherited disorder defined by ion transport abnormalities, chronic infection, and robust inflammation, is the result of mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a cAMP-activated chloride (Cl-) channel. Macrophages are reported to have impaired activity in CF. Previous studies suggest that Cl- transport is important for macrophage function; therefore, impaired Cl- secretion may underlie CF macrophage dysfunction. To determine whether alterations in Cl- transport exist in CF macrophages, Cl- efflux was measured using N-[ethoxycarbonylmethyl]- 6-methoxy-quinolinium bromide (MQAE), a fluorescent indicator dye. The contribution of CFTR was assessed by calculating Cl- flux in the presence and absence of cftr(inh)-172. The contribution of calcium (Ca(2+))-modulated Cl- pathways was assessed by examining Cl- flux with varied extracellular Ca(2+) concentrations or after treatment with carbachol or thapsigargin, agents that increase intracellular Ca(2+) levels. Our data demonstrate that CFTR contributed to Cl- efflux only in WT macrophages, while Ca(2+)-mediated pathways contributed to Cl- transport in CF and WT macrophages. Furthermore, CF macrophages demonstrated augmented Cl- efflux with increases in extracellular Ca(2+). Taken together, this suggests that Ca(2+)-mediated Cl- pathways are enhanced in CF macrophages compared with WT macrophages.