993 resultados para Aircraft gas-turbines
Resumo:
Optimisation of organic Rankine cycles(ORCs for binary cycle applications could play a major role in determining the competitiveness of low to moderate renewable sources. An important aspect of the optimisation is to maximise the turbine output power for a given resource. This requires careful attention to the turbine design notably through numerical simulations. Challenges in the numerical modelling of radial-inflow turbines using high-density working fluids still need to be addressed in order to improve the turbine design and better optimise ORCs. Thispaper presents preliminary 3D numerical simulations of a high-density radial-inflow ORC turbine in sensible geothermal conditions. Following extensive investigation of the operating conditions and thermodynamic cycle analysis, therefrigerant R143a is chosen as the high-density working fluid. The 1D design of the candidate radial-inflow turbine is presented in details. Furthermore, commercially-available software Ansys-CFX is used to perform preliminary steady-state 3D CFD simulations of the candidate R143a radial-inflow turbine for a number of operating conditions including off-design conditions. The real-gas properties are obtained using the Peng–Robinson equations of state.The thermodynamic ORC cycle is presented. The preliminary design created using dedicated radial-inflow turbine software Concepts-Rital is discussed and the 3D CFD results are presented and compared against the meanline analysis.
Resumo:
As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha−1 on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha−1) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC
Resumo:
This paper proposes new techniques for aircraft shape estimation, passive ranging, and shape-adaptive hidden Markov model filtering which are suitable for a monocular vision-based non-cooperative collision avoidance system. Vision-based passive ranging is an important missing technology that could play a significant role in resolving the sense-and-avoid problem in un-manned aerial vehicles (UAVs); a barrier hindering the wider adoption of UAVs for civilian applications. The feasibility of the pro- posed shape estimation, passive ranging and shape-adaptive filtering techniques is evaluated on flight test data.
Resumo:
Few would disagree that the upstream oil & gas industry has become more technology-intensive over the years. But how does innovation happen in the industry? Specifically, what ideas and inputs flow from which parts of the sector׳s value network, and where do these inputs go? And how do firms and organizations from different countries contribute differently to this process? This paper puts forward the results of a survey designed to shed light on these questions. Carried out in collaboration with the Society of Petroleum Engineers (SPE), the survey was sent to 469 executives and senior managers who played a significant role with regard to R&D and/or technology deployment in their respective business units. A total of 199 responses were received from a broad range of organizations and countries around the world. Several interesting themes and trends emerge from the results, including: (1) service companies tend to file considerably more patents per innovation than other types of organization; (2) over 63% of the deployed innovations reported in the survey originated in service companies; (3) neither universities nor government-led research organizations were considered to be valuable sources of new information and knowledge in the industry׳s R&D initiatives, and; (4) despite the increasing degree of globalization in the marketplace, the USA still plays an extremely dominant role in the industry׳s overall R&D and technology deployment activities. By providing a detailed and objective snapshot of how innovation happens in the upstream oil & gas sector, this paper provides a valuable foundation for future investigations and discussions aimed at improving how R&D and technology deployment are managed within the industry. The methodology did result in a coverage bias within the survey, however, and the limitations arising from this are explored.
Resumo:
Rapid recursive estimation of hidden Markov Model (HMM) parameters is important in applications that place an emphasis on the early availability of reasonable estimates (e.g. for change detection) rather than the provision of longer-term asymptotic properties (such as convergence, convergence rate, and consistency). In the context of vision- based aircraft (image-plane) heading estimation, this paper suggests and evaluates the short-data estimation properties of 3 recursive HMM parameter estimation techniques (a recursive maximum likelihood estimator, an online EM HMM estimator, and a relative entropy based estimator). On both simulated and real data, our studies illustrate the feasibility of rapid recursive heading estimation, but also demonstrate the need for careful step-size design of HMM recursive estimation techniques when these techniques are intended for use in applications where short-data behaviour is paramount.
Resumo:
The upstream oil & gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data”—that is, the ability to apply more sophisticated types of analytical tools to information in a way that extracts new insights or creates new forms of value—is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil & gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This paper examines existing data management practices in the upstream oil & gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the Big Data revolution. The comparison shows that, in companies that are leading the Big Data revolution, data is regarded as a valuable asset. The presented evidence also shows, however, that this is usually not true within the oil & gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how upstream oil & gas companies could potentially extract more value from data, and concludes with a series of specific technical and management-related recommendations to this end.