943 resultados para Additional somatosensory information
Resumo:
It is a big challenge to clearly identify the boundary between positive and negative streams. Several attempts have used negative feedback to solve this challenge; however, there are two issues for using negative relevance feedback to improve the effectiveness of information filtering. The first one is how to select constructive negative samples in order to reduce the space of negative documents. The second issue is how to decide noisy extracted features that should be updated based on the selected negative samples. This paper proposes a pattern mining based approach to select some offenders from the negative documents, where an offender can be used to reduce the side effects of noisy features. It also classifies extracted features (i.e., terms) into three categories: positive specific terms, general terms, and negative specific terms. In this way, multiple revising strategies can be used to update extracted features. An iterative learning algorithm is also proposed to implement this approach on RCV1, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
Over the years, people have often held the hypothesis that negative feedback should be very useful for largely improving the performance of information filtering systems; however, we have not obtained very effective models to support this hypothesis. This paper, proposes an effective model that use negative relevance feedback based on a pattern mining approach to improve extracted features. This study focuses on two main issues of using negative relevance feedback: the selection of constructive negative examples to reduce the space of negative examples; and the revision of existing features based on the selected negative examples. The former selects some offender documents, where offender documents are negative documents that are most likely to be classified in the positive group. The later groups the extracted features into three groups: the positive specific category, general category and negative specific category to easily update the weight. An iterative algorithm is also proposed to implement this approach on RCV1 data collections, and substantial experiments show that the proposed approach achieves encouraging performance.
Resumo:
This qualitative study views international students as information-using learners, through an information literacy lens. Focusing on the experiences of 25 international students at two Australian universities, the study investigates how international students use online information resources to learn, and identifies associated information literacy learning needs. An expanded critical incident approach provided the methodological framework for the study. Building on critical incident technique, this approach integrated a variety of concepts and research strategies. The investigation centred on real-life critical incidents experienced by the international students whilst using online resources for assignment purposes. Data collection involved semi-structured interviews and an observed online resource-using task. Inductive data analysis and interpretation enabled the creation of a multifaceted word picture of international students using online resources and a set of critical findings about their information literacy learning needs. The study’s key findings reveal: • the complexity of the international students’ experience of using online information resources to learn, which involves an interplay of their interactions with online resources, their affective and reflective responses to using them, and the cultural and linguistic dimensions of their information use. • the array of strengths as well as challenges that the international students experience in their information use and learning. • an apparent information literacy imbalance between the international students’ more developed information skills and less developed critical and strategic approaches to using information • the need for enhanced information literacy education that responds to international students’ identified information literacy needs. Responding to the findings, the study proposes an inclusive informed learning approach to support reflective information use and inclusive information literacy learning in culturally diverse higher education environments.
Resumo:
This paper investigates self–Googling through the monitoring of search engine activities of users and adds to the few quantitative studies on this topic already in existence. We explore this phenomenon by answering the following questions: To what extent is the self–Googling visible in the usage of search engines; is any significant difference measurable between queries related to self–Googling and generic search queries; to what extent do self–Googling search requests match the selected personalised Web pages? To address these questions we explore the theory of narcissism in order to help define self–Googling and present the results from a 14–month online experiment using Google search engine usage data.
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).
Resumo:
In this paper, we propose an unsupervised segmentation approach, named "n-gram mutual information", or NGMI, which is used to segment Chinese documents into n-character words or phrases, using language statistics drawn from the Chinese Wikipedia corpus. The approach alleviates the tremendous effort that is required in preparing and maintaining the manually segmented Chinese text for training purposes, and manually maintaining ever expanding lexicons. Previously, mutual information was used to achieve automated segmentation into 2-character words. The NGMI approach extends the approach to handle longer n-character words. Experiments with heterogeneous documents from the Chinese Wikipedia collection show good results.
Resumo:
Objective: To summarise the extent to which narrative text fields in administrative health data are used to gather information about the event resulting in presentation to a health care provider for treatment of an injury, and to highlight best practise approaches to conducting narrative text interrogation for injury surveillance purposes.----- Design: Systematic review----- Data sources: Electronic databases searched included CINAHL, Google Scholar, Medline, Proquest, PubMed and PubMed Central.. Snowballing strategies were employed by searching the bibliographies of retrieved references to identify relevant associated articles.----- Selection criteria: Papers were selected if the study used a health-related database and if the study objectives were to a) use text field to identify injury cases or use text fields to extract additional information on injury circumstances not available from coded data or b) use text fields to assess accuracy of coded data fields for injury-related cases or c) describe methods/approaches for extracting injury information from text fields.----- Methods: The papers identified through the search were independently screened by two authors for inclusion, resulting in 41 papers selected for review. Due to heterogeneity between studies metaanalysis was not performed.----- Results: The majority of papers reviewed focused on describing injury epidemiology trends using coded data and text fields to supplement coded data (28 papers), with these studies demonstrating the value of text data for providing more specific information beyond what had been coded to enable case selection or provide circumstantial information. Caveats were expressed in terms of the consistency and completeness of recording of text information resulting in underestimates when using these data. Four coding validation papers were reviewed with these studies showing the utility of text data for validating and checking the accuracy of coded data. Seven studies (9 papers) described methods for interrogating injury text fields for systematic extraction of information, with a combination of manual and semi-automated methods used to refine and develop algorithms for extraction and classification of coded data from text. Quality assurance approaches to assessing the robustness of the methods for extracting text data was only discussed in 8 of the epidemiology papers, and 1 of the coding validation papers. All of the text interrogation methodology papers described systematic approaches to ensuring the quality of the approach.----- Conclusions: Manual review and coding approaches, text search methods, and statistical tools have been utilised to extract data from narrative text and translate it into useable, detailed injury event information. These techniques can and have been applied to administrative datasets to identify specific injury types and add value to previously coded injury datasets. Only a few studies thoroughly described the methods which were used for text mining and less than half of the studies which were reviewed used/described quality assurance methods for ensuring the robustness of the approach. New techniques utilising semi-automated computerised approaches and Bayesian/clustering statistical methods offer the potential to further develop and standardise the analysis of narrative text for injury surveillance.
Resumo:
A laboratory scale twin screw extruder has been interfaced with a near infrared (NIR) spectrometer via a fibre optic link so that NIR spectra can be collected continuously during the small scale experimental melt state processing of polymeric materials. This system can be used to investigate melt state processes such as reactive extrusion, in real time, in order to explore the kinetics and mechanism of the reaction. A further advantage of the system is that it has the capability to measure apparent viscosity simultaneously which gives important additional information about molecular weight changes and polymer degradation during processing. The system was used to study the melt processing of a nanocomposite consisting of a thermoplastic polyurethane and an organically modified layered silicate.
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, an explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Webbased Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these webbased tools for collaborative decision making.
Resumo:
1. Ecological data sets often use clustered measurements or use repeated sampling in a longitudinal design. Choosing the correct covariance structure is an important step in the analysis of such data, as the covariance describes the degree of similarity among the repeated observations. 2. Three methods for choosing the covariance are: the Akaike information criterion (AIC), the quasi-information criterion (QIC), and the deviance information criterion (DIC). We compared the methods using a simulation study and using a data set that explored effects of forest fragmentation on avian species richness over 15 years. 3. The overall success was 80.6% for the AIC, 29.4% for the QIC and 81.6% for the DIC. For the forest fragmentation study the AIC and DIC selected the unstructured covariance, whereas the QIC selected the simpler autoregressive covariance. Graphical diagnostics suggested that the unstructured covariance was probably correct. 4. We recommend using DIC for selecting the correct covariance structure.
Resumo:
The use of the PC and Internet for placing telephone calls will present new opportunities to capture vast amounts of un-transcribed speech for a particular speaker. This paper investigates how to best exploit this data for speaker-dependent speech recognition. Supervised and unsupervised experiments in acoustic model and language model adaptation are presented. Using one hour of automatically transcribed speech per speaker with a word error rate of 36.0%, unsupervised adaptation resulted in an absolute gain of 6.3%, equivalent to 70% of the gain from the supervised case, with additional adaptation data likely to yield further improvements. LM adaptation experiments suggested that although there seems to be a small degree of speaker idiolect, adaptation to the speaker alone, without considering the topic of the conversation, is in itself unlikely to improve transcription accuracy.
Resumo:
Recommender Systems is one of the effective tools to deal with information overload issue. Similar with the explicit rating and other implicit rating behaviours such as purchase behaviour, click streams, and browsing history etc., the tagging information implies user’s important personal interests and preferences information, which can be used to recommend personalized items to users. This paper is to explore how to utilize tagging information to do personalized recommendations. Based on the distinctive three dimensional relationships among users, tags and items, a new user profiling and similarity measure method is proposed. The experiments suggest that the proposed approach is better than the traditional collaborative filtering recommender systems using only rating data.
Resumo:
This chapter considers how open content licences of copyright-protected materials – specifically, Creative Commons (CC) licences - can be used by governments as a simple and effective mechanism to enable reuse of their PSI, particularly where materials are made available in digital form online or distributed on disk.
Resumo:
In this paper techniques for scheduling additional train services (SATS) are considered as is train scheduling involving general time window constraints, fixed operations, maintenance activities and periods of section unavailability. The SATS problem is important because additional services must often be given access to the railway and subsequently integrated into current timetables. The SATS problem therefore considers the competition for railway infrastructure between new services and existing services belonging to the same or different operators. The SATS problem is characterised as a hybrid job shop scheduling problem with time window constraints. To solve this problem constructive algorithm and metaheuristic scheduling techniques that operate upon a disjunctive graph model of train operations are utilised. From numerical investigations the proposed framework and associated techniques are tested and shown to be effective.