999 resultados para Accumulation rate, n-alkane


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Accumulation rate of dissolved organic matter (DOM) by natural populations varies over a wide range. In the surface layer of the Black Sea accumulation rate of glucose is 0.6-4.82 mg C/m**3 per day, and in the Atlantic Ocean 1.15-12.38 mg C/m**3 per day. This rate is 2-17 times higher when hydrolysate is added to the medium. Accumulation rate of glucose and hydrolysate in the aphotic layer of the Black Sea and the Atlantic Ocean is 1.5-6 times lower than at the surface. The organotrophic coefficient also varied within wide range. Relative amount of DOM used by microorganisms for growth in total production is much less (0.6-39.9%) in areas of intensive photosynthesis than in waters poor in DOM (83.7-99.2%).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CaCO3, Corg, and biogenic SiO2 were measured in Eocene equatorial Pacific sediments from Sites 1218 and 1219, and bulk oxygen and carbon isotopes were measured on selected intervals from Site 1219. These data delineate a series of CaCO3 events that first appeared at ~48 Ma and continued to the Eocene/Oligocene boundary. Each event lasted 1-2 m.y. and is separated from the next by a low CaCO3 interval of a similar time span. The largest of these carbonate accumulation events (CAE-3) is in Magnetochron 18. It began at ~42.2 Ma, lasted until ~40.3 Ma, and was marked by higher than average productivity. The end of CAE-3 was abrupt and was associated with a large-scale carbon transfer to the oceans prior to warming of high-latitude regions. Changes in carbonate compensation depth associated with CAE excursions were small in the early part of the middle Eocene but increased to as much as 800 m by the late middle Eocene before decreasing into the late Eocene. Oxygen isotope data indicate that the carbonate events are associated with cooling conditions and may mark small glaciations in the Eocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 328 cm-long piston core (KODOS 02-01-02) collected from the northeast equatorial Pacific at 16°12'N, 125°59'W was investigated for eolian mass fluxes and grain sizes to test these proxies as a tool for the paleo-position of the Intertropical Convergence Zone (ITCZ). The eolian mass fluxes of the lower interval below 250 cm (15.5-7.6 Ma) are very uniform at 5 +/- 1 mg/cm**2/kyr, while those of the upper interval above 250 cm (from 7.6 Ma) are over 2 times higher than the lower interval at 12 +/- 1 mg/cm**2/kyr. The median grain size of the eolian dusts in the lower interval increases from 8.4 Phi to 8.0 Phi downward, while that of the upper interval varies in a narrow range from 8.8 Phi to 8.6 Phi. The determined values compare well in magnitude to those of central Pacific sediments for the upper interval and equatorial and southeast Pacific sediments for the lower interval. This result suggests a possibility that the study site had been under the influence of southeast trade winds at its earlier depositional period due to the northerly position of the ITCZ, and subsequently of the northeast trade winds for a later period when the upper sediments were deposited. This interpretation is consistent with a mineralogical and geochemical study published elsewhere that assigned the provenance of the study core dust to Central/South America for the lower interval and to Asia for the upper interval. This study suggests that the distinct differences in eolian mass flux and grain size observed across the ITCZ can be used to trace the paleo-latitude of the ITCZ.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stable isotope records of coexisting benthic foraminifers Uvigerina spp. and Cibicidoides spp. and planktonic G. ruber (white variety) from Site 724 are used to study the late Pleistocene evolution of surface and intermediate water hydrography (593 m water depth) at the Oman Margin. Glacial-interglacial d18O amplitudes recorded by the benthic foraminifers are reduced when compared to the estimated mean ocean changes of d18Oseawater . Epibenthic d13C remains at its modern level or is increased during glacial times. This implies that Red Sea outflow waters which are enriched in d18Oseawater and d13C (Sum CO2) have been replaced during glacial periods by intermediate waters still positive in d13C (Sum CO2) but more negative in d18Oseawater. Glacial-interglacial amplitudes of the planktonic d18O record exceed those of the mean ocean d18Oseawater variation and imply decreased surface water temperatures (SST) during glacial times. Throughout most of the records these cooling events correlate with enhanced rates of carbon accumulation. However, both negative (colder) SST and positive Corg accumulation rate anomalies do not correlate with potential physical upwelling maxima as inferred from the orbital monsoon index. This is in conflict with the established hypothesis that upwelling in the estern Arabia Sea should be strongest during maxima of the southwest monsoon.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The magnitude of Late Holocene climatic variations are less significant than those that took place during ice ages and deglaciations. However, detailed knowledge about this period is vital in order to understand and model future climate scenarios both as a result of natural climate variation and the effects of global warming. Oceanic heat flux is important for the sensitive climate regime of northern Europe. Our aim is to connect hydrographical changes, reflected by the dinoflagellates cyst (dinocysts) assemblages in the sediments in the Malangen fjord, to local and regional climatic phases. Previous studies have shown that dinocyst assemblages are influenced by temperature, salinity, and the availability of nutrients (e.g. de Vernal et al. 2005, doi:10.1016/j.quascirev.2004.06.014; de Vernal et al. 2001, doi:10.1002/jqs.659; Grosfjeld et al. this volume; Rochon et al. 2008, doi:10.1016/j.marmicro.2008.04.001; Solignac et al. this volume). Dinoflagellates are mostly unicellular organisms that make up one of the main groups of phytoplankton. They are able to regulate their depth within the photic zone and to concentrate along oceanic fronts, which provide nutrient-enriched waters. The dinoflagellate cysts are the hypnozygotes of dinoflagellates naturally produced during the life cycle. Their wall is composed of a highly resistant organic material, which has a high potential to fossilize. Because dinocysts species are linked to particular abiotic and biotic parameters, the dinocyst assemblages provide information about past surface water conditions. Since each fjord has its own hydrographic setting, it is necessary to establish a firm link between the dinocyst composition of the sediment surface samples and the surface water conditions. Indeed the modern dinocyst distribution in subarctic fjords is little known. Thus, in addition to detailing dinocyst results from two shallow cores, several sediment surface samples located along a transect running from the head to the mouth of the fjord, and extending onto the shelf, are also presented.