967 resultados para ANTIBIOTIC RESISTANCE
Resumo:
Antibiotic resistance has emerged as a severe problem in hospital-acquired infectious disease. The Gram-negative bacterium Pseudomonas aeruginosa is found to cause secondary infection in immune-compromised patients. Unfortunately, it is resistant to virtually all β-lactam antibiotics such as penicillin, cephalosporin and others. Researchers are seeking for new compounds to treat several antibiotic-resistant bacterial strains. Artemisia plant extracts are commonly used for their therapeutic properties by natives throughout dry regions of North and South America. Here, they are administered as an alternative medicine for stomach problems and other complex health issues. In this study, the antimicrobial effects of plant extracts from several Artemisia species as well as compounds dehydroleucodine and dehydroparishin-B (sesquiterpenes derived specifically from A. douglasiana) were used as treatments against the pathogenicity effects of P. aeruginosa. Results showed that both compounds effectively inhibit the secretion of LasB elastase, biofilm formation and type III secretion, but fail to control LasA protease. This is a significant observation because these virulent factors are crucial in establishing P.aeruginosa infection. The results from this study signify a plausible role for future alternative therapy in the biomedical field, which recommends DhL and DhP can be studied as key compounds against bacterial infections of Pseudomonas aeruginosa.
Resumo:
In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR were analyzed. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Virulence mechanisms including biofilm formation, QS-regulated acute virulence, and diverse physiological processes such as oxidative stress response, heat-shock response and iron uptake are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the transcriptome data. Further, Caenorhabditis elegans model demonstrates that a functional AmpR is required for full pathogenicity of P. aeruginosa. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. The extensive AmpR regulon included other transcriptional regulators and sigma factors, accounting for the extensive AmpR regulon. Gene expression studies demonstrate AmpR-dependent expression of the QS master regulator LasR that controls expression of many virulence factors. Using a chromosomally tagged AmpR, ChIP-Seq studies show direct AmpR binding to the lasR promoter. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating chronic infection phenotypes. In summary, my dissertation sheds light on the complex regulatory circuit in P. aeruginosa to provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors.
Resumo:
Background In Enterobacteriaceae, β-lactam antibiotic resistance involves murein recycling intermediates. Murein recycling is a complex process with discrete steps taking place in the periplasm and the cytoplasm. The AmpG permease is critical to this process as it transports N-acetylglucosamine anhydrous N-acetylmuramyl peptides across the inner membrane. In Pseudomonadaceae, this intrinsic mechanism remains to be elucidated. Since the mechanism involves two cellular compartments, the characterization of transporters is crucial to establish the link. Results Pseudomonas aeruginosa PAO1 has two ampG paralogs, PA4218 (ampP) and PA4393 (ampG). Topology analysis using β-galactosidase and alkaline phosphatase fusions indicates ampP andampG encode proteins which possess 10 and 14 transmembrane helices, respectively, that could potentially transport substrates. Both ampP and ampG are required for maximum expression of β-lactamase, but complementation and kinetic experiments suggest they act independently to play different roles. Mutation of ampG affects resistance to a subset of β-lactam antibiotics. Low-levels of β-lactamase induction occur independently of either ampP or ampG. Both ampG and ampP are the second members of two independent two-gene operons. Analysis of the ampG and ampPoperon expression using β-galactosidase transcriptional fusions showed that in PAO1, ampGoperon expression is β-lactam and ampR-independent, while ampP operon expression is β-lactam and ampR-dependent. β-lactam-dependent expression of the ampP operon and independent expression of the ampG operon is also dependent upon ampP. Conclusions In P. aeruginosa, β-lactamase induction occurs in at least three ways, induction at low β-lactam concentrations by an as yet uncharacterized pathway, at intermediate concentrations by an ampPand ampG dependent pathway, and at high concentrations where although both ampP and ampGplay a role, ampG may be of greater importance. Both ampP and ampG are required for maximum induction. Similar to ampC, ampP expression is inducible in an ampR-dependent manner. Importantly, ampP expression is autoregulated and ampP also regulates expression of ampG. Both AmpG and AmpP have topologies consistent with functions in transport. Together, these data suggest that the mechanism of β-lactam resistance of P. aeruginosa is distinct from well characterized systems in Enterobacteriaceae and involves a highly complicated interaction between these putative permeases and known Amp proteins.
Resumo:
One-third of botanical remedies from southern Italy are used to treat skin and soft tissue infections (SST's). Methicillin-resistant Staphylococcus aureus (MRSA), a common cause of SSTIs, is responsible for increased morbidity and mortality from infections. Therapeutic options are limited by antibiotic resistance. Many plants possess potent antimicrobial compounds for these disorders. Validation of traditional medical practices is important for the people who rely on medicinal plants. Moreover, identification of novel antibiotics and anti-pathogenic agents for MRSA is important to global healthcare.^ I took an ethnopharmacological approach to understand how Italian medicinal plants used for the treatment of SSTIs affect MRSA growth and virulence. My hypothesis was that plants used in folk remedies for SSTI would exhibit lower cytotoxicity and greater inhibition of bacterial growth, biofilm formation and toxin production in MRSA than plants used for remedies unrelated to the skin or for plants with no ethnomedical application. The field portion of my research was conducted in the Vulture-Alto Bradano area of southern Italy. I collected 104 plant species and created 168 crude extracts. In the lab, I screened samples for activity against MRSA in a battery of bioassays. Growth inhibition was analyzed using broth microtiter assays for determination of the minimum inhibitory concentration. Interference with quorum-sensing (QS) processes, which mediate pathogenicity, was quantified through RP-HPLC of δ-toxin production. Interference with biofilm formation and adherence was assessed using staining methods. The mammalian cytotoxicity of natural products was analyzed using MTT cell proliferation assay techniques.^ Although bacteriostatic activity was limited, extracts from six plants used in Italian folk medicine (Arundo donax, Ballota nigra, Juglans regia, Leopoldia comosa, Marrubium vulgare, and Rubus ulmifolius ) significantly inhibited biofilm formation and adherence. Moreover, plants used to treat SSTI demonstrated significantly greater anti-biofilm activity when compared to plants with no ethnomedical application. QSI activity was evident in 90% of the extracts tested and extracts from four plants ( Ballota nigra, Castanea saliva, Rosmarinus officinalis, and Sambucus ebulus) exhibited a significant dose-dependent response. Some of the plant remedies for SSTI identified in this study can be validated due to anti-MRSA activity.^
Resumo:
Antibiotic resistance has become an important area of research because of the excessive use of antibiotics in clinical and agricultural settings that are driving the evolution of antibiotic resistant bacteria. However, drug tolerance is a naturally occurring phenomenon in soil communities, and is often linked to those soils that are exposed to heavy metals as well as antibiotics. Resistance to antibiotics maybe coupled with resistance to heavy metals in soil bacteria through efflux pumps that can be regulated by iron. Although considered s a heavy metal, iron is an essential component of life that regulates gene expression through the Ferric Uptake Regulator (Fur) protein. This master regulator protein is known to control siderophore production, and other biological pathways. As a suspected controller of biofilm formation, the role of Fur in environmental antibiotic resistance may be greater than is currently realized. In this study, we sought to explore a potential Fur-regulated drug tolerance pathway by understanding the response of soil bacteria when stressed with oxytetracycline and iron. Bacteria were collected from two locations in Miami Dade County. Isolates were first tested using Kirby-Bauer Disk Diffusion tests for antibiotic resistance/susceptibility and identified by 16S rDNA sequencing. A 96-well growth assay was developed to measure planktonic cell growth with 3 mM FeCl3, Oxytetracycline HCl, and the combination treatments. A Microtiter Dish Biofilm Formation Assay was employed and Fur diversity was evaluated. Tetracycline-susceptible bacterial isolates developed drug resistance with iron supplementation, but iron did not enhance biofilm formation. Development of a Fur-dependent drug resistance may be selected for, but further study is required to evaluate Fur evolution in the studied isolates. Gene expression analysis is also needed to further understand the ecological role of Fur and antibiotic resistance.
Resumo:
Pseudomonas aeruginosa, a Gram-negative bacterium, an opportunistic pathogen that infects individuals suffering from reduced immunity or damaged tissue. The treatment of these infections has become a major problem due to its increasing antibiotic resistance. Many multi-drug resistant isolates of P. aeruginosa can thwart most antibiotic classes including ?- lactams, fluoroquinolones, and aminoglycosides. Its ability to combat ?-lactams is in part due to expression of AmpC, a major chromosomally encoded ?-lactamase. The expression of ampC is positively regulated by AmpR. Besides antibiotic resistance, AmpR is an important regulator of various factors that are required for establishing acute and chronic infections. Loss of ampR makes P. aeruginosa susceptible to ?-lactams and less virulent than the wild type. We hypothesize that AmpR is a potential therapeutic target. In the absence of new drugs in the pipeline, the aim of this study is to find an AmpR-specific inhibitor to assist and improve the use of currently available ?- lactam treatment. A small-molecule library from Torrey Pines Institute will be used in this study. Two reporter systems, lux and lacZ, fused to a PampC promotor will be used to assess AmpR activity. Positive hits will be those that inhibit 50% PampC activity in the presence of sub inhibitory concentration of imipenem, a ?- lactam. The top positive hits will be screened for their ability to cause human cell-cytotoxicity. The non-cytotoxic hits will be assessed for their ability to affect P. aeruginosa virulence and antibiotic resistance using various in vitro assays. Determination of potential AmpR inhibitors will prove to be useful in fighting off infections and may save countless patients suffering from these infections.
Resumo:
Transition metals such as iron and copper are valued in biology for their redox activities because they are able to access various oxidation states. However, these transition metals are also implicated in a number of human disease states and play a role in bacterial infections. The ability to manipulate and monitor metal ions has vast implications on the fields of biology and human health. As such, the research described here covers two related goals: to manipulate metals in specific biological circumstances and to visualize this disturbance in cellular metal homeostasis.
Antibiotic resistance necessitates the development of drugs that exploit new mechanisms of action such as the disruption of metal homeostasis. In order to manipulate metals at the site of bacterial infection, two prochelators were developed around a β-lactam core such that the active chelator is released in the presence of bacteria that produce the resistance-causing β-lactamase enzyme. Both prochelators display enhanced activity toward resistant bacteria compared to clinical antibiotics.
Fluorescent sensors are a powerful tool for detecting small concentrations of biological analytes. Two analogs of a ratiometric fluorescent sensor were designed and synthesized to monitor cellular concentrations of copper and iron. These sensors were found to operate as designed in vitro; however the fluorescence intensity necessary for quantification of cellular metal pools has not yet been achieved.
Resumo:
Acute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.
Resumo:
Lactobacillus salivarius is unusual among the lactobacilli due to its multireplicon genome architecture. The circular megaplasmids harboured by L. salivarius strains encode strain-specific traits for intestinal survival and probiotic activity. L. salivarius strains are increasingly being exploited for their probiotic properties in humans and animals. In terms of probiotic strain selection, it is important to have an understanding of the level of genomic diversity present in this species. Comparative genomic hybridization (CGH) and multilocus sequence typing (MLST) were employed to assess the level of genomic diversity in L. salivarius. The wellcharacterised probiotic strains L. salivarius UCC118 was employed as a genetic reference strain. The group of test strains were chosen to reflect the range of habitats from which L. salivarius strains are frequently recovered, including human, animal, and environmental sources. Strains of L. salivarius were found to be genetically diverse when compared to the UCC118 genome. The most conserved strains were human GIT isolates, while the greatest level of divergence were identified in animal associated isolates. MLST produced a better separation of the test strains according to their isolation origins, than that produced by CGHbased strain clustering. The exopolysaccharide (EPS) associated genes of L. salivarius strains were found to be highly divergent. The EPS-producing phenotype was found to be carbonsource dependent and inversely related to a strain's ability to produce a biofilm. The genome of the porcine isolate L. salivarius JCM1046 was shown by sequencing to harbour four extrachromosomal replicons, a circular megaplasmid (pMP1046A), a putative chromid (pMP1046B), a linear megaplasmid (pLMP1046) and a smaller circular plasmid (pCTN1046) which contains an integrated Tn916-like element (Tn6224), which carries the tetracycline resistance gene tetM. pLMP1046 represents the first sequence of a linear plasmid in a Lactobacillus species. Dissemination of antibiotic resistance genes among species with food or probiotic-association is undesirable, and the identification of Tn6224-like elements in this species has implications for strain selection for probiotic applications. In summary, this thesis used a comparative genomics approach to examine the level of genotypic diversity in L. salivarius, a species which contains probiotic strains. The genome sequence of strain JCM1046 provides additional insight into the spectrum of extrachromosomal replicons present in this species.
Resumo:
Chronic lung infection with bacteria from the Burkholderia cepacia complex (BCC), and in particular B. cenocepacia, is associated with significant morbidity and mortality in patients with cystic fibrosis (CF). B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance. Recently, atmospheric pressure non-thermal plasmas (APNTPs) have gained increasing attention as a novel approach to the prevention and treatment of a variety of hospital-acquired infections. In this study, we evaluated an in-house-designed kHz-driven plasma source for the treatment of biofilms of a number of clinical CF B. cenocepacia isolates. The results demonstrated that APNTP is an effective and efficient tool for the eradication of B. cenocepacia biofilms but that efficacy is highly variable across different isolates. Determination of phenotypic differences between isolates in an attempt to understand variability in plasma tolerance revealed that isolates which are highly tolerant to APNTP typically produce biofilms of greater biomass than their more sensitive counterparts. This indicates a potential role for biofilm matrix components in biofilm tolerance to APNTP exposure. Furthermore, significant isolate-dependent differences in catalase activity in planktonic bacteria positively correlated with phenotypic resistance to APNTP by isolates grown in biofilms.
Resumo:
BACKGROUND: Invasive meningococcal disease is a significant cause of mortality and morbidity in the UK. Administration of chemoprophylaxis to close contacts reduces the risk of a secondary case. However, unnecessary chemoprophylaxis may be associated with adverse reactions, increased antibiotic resistance and removal of organisms, such as Neisseria lactamica, which help to protect against meningococcal disease. Limited evidence exists to suggest that overuse of chemoprophylaxis may occur. This study aimed to evaluate prescribing of chemoprophylaxis for contacts of meningococcal disease by general practitioners and hospital staff. METHODS: Retrospective case note review of cases of meningococcal disease was conducted in one health district from 1st September 1997 to 31st August 1999. Routine hospital and general practitioner prescribing data was searched for chemoprophylactic prescriptions of rifampicin and ciprofloxacin. A questionnaire of general practitioners was undertaken to obtain more detailed information. RESULTS: Prescribing by hospital doctors was in line with recommendations by the Consultant for Communicable Disease Control. General practitioners prescribed 118% more chemoprophylaxis than was recommended. Size of practice and training status did not affect the level of additional prescribing, but there were significant differences by geographical area. The highest levels of prescribing occurred in areas with high disease rates and associated publicity. However, some true close contacts did not appear to receive prophylaxis. CONCLUSIONS: Receipt of chemoprophylaxis is affected by a series of patient, doctor and community interactions. High publicity appears to increase demand for prophylaxis. Some true contacts do not receive appropriate chemoprophylaxis and are left at an unnecessarily increased risk
Resumo:
Bacterial infections, especially the ones that are caused by multidrug-resistant strains, are becoming increasingly difficult to treat and put enormous stress on healthcare systems. Recently President Obama announced a new initiative to combat the growing problem of antibiotic resistance. New types of antibiotic drugs are always in need to catch up with the rapid speed of bacterial drug-resistance acquisition. Bacterial second messengers, cyclic dinucleotides, play important roles in signal transduction and therefore are currently generating great buzz in the microbiology community because it is believed that small molecules that inhibit cyclic dinucleotide signaling could become next-generation antibacterial agents. The first identified cyclic dinucleotide, c-di-GMP, has now been shown to regulate a large number of processes, such as virulence, biofilm formation, cell cycle, quorum sensing, etc. Recently, another cyclic dinucleotide, c-di-AMP, has emerged as a regulator of key processes in Gram-positive and mycobacteria. C-di-AMP is now known to regulate DNA damage sensing, fatty acid synthesis, potassium ion transport, cell wall homeostasis and host type I interferon response induction. Due to the central roles that cyclic dinucleotides play in bacteria, we are interested in small molecules that intercept cyclic dinucleotide signaling with the hope that these molecules would help us learn more details about cyclic dinucleotide signaling or could be used to inhibit bacterial viability or virulence. This dissertation documents the development of several small molecule inhibitors of a cyclic dinucleotide synthase (DisA from B. subtilis) and phosphodiesterases (RocR from P. aeruginosa and CdnP from M. tuberculosis). We also demonstrate that an inhibitor of RocR PDE can inhibit bacterial swarming motility, which is a virulence factor.
Resumo:
Orthopaedic infections can be polymicrobial existing as a microbiome. Infections often incorporate staphylococcal species, including Staphylococcus aureus. Such infections can lead to life threatening illness and implant failure. Furthermore, biofilm formation on the implant surface can occur, increasing pathogenicity, exacerbating antibiotic resistance and altering antimicrobial mechanism of action. Bacteria change dramatically during the transition to a biofilm growth state: phenotypically; transcriptionally; and metabolically, highlighting the need for research into molecular mechanisms involved in biofilm formation. Metabolomics can provide a tool to analyse metabolic changes which are directly related to the expressed phenotype. Here, we aimed to provide greater understanding of orthopaedic infection caused by S. aureus and biofilm formation on the implant surface. Through metagenome analysis by employing: implant material extraction; DNA extraction; microbial enrichment; and whole genome sequencing, we present a microbiome study of the infected prosthesis to resolve the causative species of orthopaedic hip infection. Results highlight the presence of S. aureus as a primary cause of orthopaedic infection along with Enterococcus faecium and the presence of secondary pathogen Clostridium difficile. Although results were hindered by the presence of host contaminating DNA even after microbial enrichment, conclusions could be made over the potential increased pathogenicity caused by the presence of a secondary pathogen and highlight method and sample preparation considerations when undertaking such a study. Following this finding, studies were focused on an orthopaedic clinical isolate of S. aureus and a metabolome extraction method for staphylococcal biofilms was developed using cell lysis through bead beating and solvent metabolome extraction. The method was found to be reproducible when coupled with liquid chromatography-mass spectrometry (LC-MS) and bioinformatics, allowing for the detection of significant changes in metabolism between planktonic and biofilm cultures to be identified and drug mechanism of actions (MOA) to be studied. Metabolomics results highlight significant changes in a number of metabolic pathways including arginine biosynthesis and purine metabolism between the two cell populations, evidence of S. aureus responding to their changing environment, including oxygen availability and a decrease in pH. Focused investigations on purine metabolism looking for biofilm modulation effects were carried out. Modulation of the S. aureus biofilm phenotype was observed through the addition of exogenous metabolites. Inosine increased biofilm biomass while formycin B, an inosine analogue, showed a dispersal effect and a potential synergistic effect in biofilm dispersal when coupled with gentamycin. Changes in metabolism between planktonic cells and biofilms highlight the requirement for antimicrobial testing to be carried out against planktonic cells and biofilms. Untargeted metabolomics was used to study the MOA of triclosan in S. aureus. The triclosan target and MOA in bacteria has already been characterised, however, questions remain over its effects in bacteria. Although the use of triclosan has come under increasing speculation, its full effects are still largely unknown. Results show that triclosan can induce a cascade of detrimental events in the cell metabolism including significant changes in amino acid metabolism, affecting planktonic cells and biofilms. Results and conclusions provide greater understanding of orthopaedic infections and specifically focus on the S. aureus biofilm, confirming S. aureus as a primary cause of orthopaedic infection and using metabolomic analysis to look at the changing state of metabolism between the different growth states. Metabolomics is a valuable tool for biofilm and drug MOA studies, helping understand orthopaedic infection and implant failure, providing crucial insight into the biochemistry of bacteria for the potential for inferences to be gained, such as the MOA of antimicrobials and the identification of novel metabolic drug targets.
Resumo:
A critical step during Bacillus anthracis infection is the outgrowth of germinated spores into vegetative bacilli that proliferate and disseminate rapidly within the host. An important challenge exists for developing chemotherapeutic agents that act upon and kill B. anthracis immediately after germination initiation when antibiotic resistance is lost, but prior to the outgrowth into vegetative bacilli, which is accompanied by toxin production. Chemical agents must also function in a manner refractive to the development of antimicrobial resistance. In this thesis we have identified the lantibiotics as a class of chemotherapeutics that are predicted to satisfy these two criteria. The objective of this thesis was to evaluate the efficacy of nisin, a prototypical lantibiotic, in prevention of outgrowth of germinated B. anthracis spores. Like all lantibiotics, nisin is a ribosomally translated peptide that undergoes post-translational modification to form (methyl)lanthionine rings that are critical for antimicrobial activity. Our studies indicate that nisin rapidly inhibits the in vitro outgrowth of germinated B. anthracis Sterne 7702 spores. Although germination initiation was shown to be essential for nisin-dependent antimicrobial activity, nisin did not inhibit or promote germination initiation. Nisin irreversibly killed germinated spores by blocking the establishment of a membrane potential and oxidative metabolism, while not affecting the dissolution of the outer spore structures. The membrane permeability of the spore was increased by nisin, but germinated spores did not undergo full lysis. Nisin was demonstrated to localize to lipid II, which is the penultimate precursor for cell wall biogenesis. This localization suggests two possible independent mechanisms of action, membrane pore formation and inhibition of peptidoglycan synthesis. Structure-activity studies with a truncated form of nisin lacking the two C-terminal (methyl)lanthionine rings and with non-pore forming mutants indicated that membrane disruption is essential for nisin-dependent inhibition of spore outgrowth to prevent membrane potential establishment. Finally, utilizing an in vitro infection model, it was shown that nisin reduced the viability of B. anthracis spores within an infection resulting in increased survival of immune cells while reducing infection-mediated cytokine expression. Fluorescence microscopy indicated that nisin localizes with spores within phagosomes of peritioneal macrophages in germinating conditions. These data demonstrate the effectiveness of nisin, as a model lantibiotic, for preventing spore outgrowth. It is speculated that nisin targeting of lipid II, resulting in membrane perturbations, may be effective at inhibiting the outgrowth of spores prepared from bacteria across a number of species.