961 resultados para AEROBIC GLYCOLYSIS
Aerobic and anaerobic test performance among elite male football players in different team positions
Resumo:
The purpose was to determine the magnitude of aerobic and anaerobic performance factors among elite male football players in different team positions. Thirty-nine players from the highest Swedish division classified as defenders (n=18), midfield players (n=12) or attackers (n=9) participated. Their mean (± sd) age, height and body mass (bm) were 24.4 (±4.7) years, 1.80 (±5.9)m and 79 (±7.6)kg, respectively. Running economy (RE) and anaerobic threshold (AT) was determined at 10, 12, 14, and 16km/h followed by tests of maximal oxygen uptake (VO2max). Maximal strength (1RM) and average power output (AP) was performed in squat lifting. Squat jump (SJ), counter-movement jump with free arm swing (CMJa), 45m maximal sprint and the Wingate test was performed. Average VO2max for the whole population (WP) was 57.0mL O2•kg-1min-1 . The average AT occurred at about 84% of VO2max. 1RM per kg bm0.67 was 11.9±1.3kg. Average squat power in the whole population at 40% 1RM was 70±9.5W per kg bm0.67 . SJ and CMJa were 38.6±3.8cm and 48.9±4.4cm, respectively. The average sprint time (45m) was 5.78± 0.16s. The AP in the Wingate test was 10.6±0.9W•kg-1 . The average maximal oxygen uptake among players in the highest Swedish division was lower compared to international elite players but the Swedish players were better off concerning the anaerobic threshold and in the anaerobic tests. No significant differences were revealed between defenders, midfielders or attackers concerning the tested parameters presented above.
Resumo:
The purpose was to determine running economy and lactate threshold among a selection of male elite football players with high and low aerobic power. Forty male elite football players from the highest Swedish division (“Allsvenskan”) participated in the study. In a test of running economy (RE) and blood lactate accumulation the participants ran four minutes each at 10, 12, 14, and 16 km•h-1 at horizontal level with one minute rest in between each four minutes interval. After the last sub-maximal speed level the participants got two minutes of rest before test of maximal oxygen uptake (VO2max). Players that had a maximal oxygen uptake lower than the average for the total population of 57.0 mL O2•kg-1•minute-1 were assigned to the low aerobic power group (LAP) (n=17). The players that had a VO2max equal to or higher than 57.0 mL O2•kg-1•minute-1 were selected for the high aerobic power group (HAP) (n=23). The VO2max was significantly different between the HAP and LAP group. The average RE, measured as oxygen uptake at 12, 14 and 16km•h-1 was significantly lower but the blood lactate concentration was significantly higher at 14 and 16 km•h-1 for theLAP group compared with the HAP group.
Aerobic and anaerobic test performance among elite male football players in different team positions
Resumo:
The purpose was to determine the magnitude of aerobic and anaerobic performance factors among elite male football players in different team positions. Thirty-nine players from the highest Swedish division classified as defenders (n=18), midfield players (n=12) or attackers (n=9) participated. Their mean (± sd) age, height and body mass (bm) were 24.4 (±4.7) years, 1.80 (±5.9)m and 79 (±7.6)kg, respectively. Running economy (RE) and anaerobic threshold (AT) was determined at 10, 12, 14, and 16km/h followed by tests of maximal oxygen uptake (VO2max). Maximal strength (1RM) and average power output (AP) was performed in squat lifting. Squat jump (SJ), counter-movement jump with free arm swing (CMJa), 45m maximal sprint and the Wingate test was performed. Average VO2max for the whole population (WP) was 57.0mL O2•kg-1min-1. The average AT occurred at about 84% of VO2max. 1RM per kg bm0.67 was 11.9±1.3kg. Average squat power in the whole population at 40% 1RM was70±9.5W per kg bm0.67. SJ and CMJa were 38.6±3.8cm and 48.9±4.4cm,respectively. The average sprint time (45m) was 5.78± 0.16s. The AP in the Wingate test was 10.6±0.9W•kg-1. The average maximal oxygen uptake among players in the highest Swedish division was lower compared to international elite players but the Swedish players were better off concerning the anaerobic threshold and in the anaerobic tests. No significant differences were revealed between defenders, midfielders or attackers concerning the tested parameters presented above.
Resumo:
This study examined effects of 12 weeks of moderate-intensity aerobic exercise on eating behaviour, food cravings and weekly energy intake and expenditure in inactive men. Eleven healthy men (mean ± SD: age, 26 ± 5 years; body mass index, 24.6 ± 3.8 kg/m2; maximum oxygen uptake, 43.1 ± 7.4 mL/kg/min) completed the 12-week supervised exercise programme. Body composition, health markers (e.g. blood pressure), eating behaviour, food cravings and weekly energy intake and expenditure were assessed before and after the exercise intervention. There were no intervention effects on weekly free-living energy intake (p=0.326, d=-0.12) and expenditure (p=0.799, d=0.04), or uncontrolled eating and emotional eating scores (p>0.05). However, there was a trend with a medium effect size (p=0.058, d=0.68) for cognitive restraint to be greater after the exercise intervention. Total food cravings (p=0.009, d=-1.19) and specific cravings of high-fat foods (p=0.023, d=-0.90), fast-food fats (p=0.009, d=-0.71) and carbohydrates/starches (p=0.009, d=-0.56) decreased from baseline to 12 weeks. Moreover, there was a trend with a large effect size for cravings of sweets (p=0.052, d=-0.86) to be lower after the exercise intervention. In summary, 12 weeks of moderate-intensity aerobic exercise reduced food cravings and increased cognitive restraint, however, these were not accompanied by changes in other eating behaviours and weekly energy intake and expenditure. The results indicate the importance of exercising for health improvements even when reductions in body mass are modest.
Resumo:
Purpose The aim of this study was to test the effects of sprint interval training (SIT) on cardiorespiratory fitness and aerobic performance measures in young females. Methods Eight healthy, untrained females (age 21 ± 1 years; height 165 ± 5 cm; body mass 63 ± 6 kg) completed cycling peak oxygen uptake ( V˙O2V˙O2 peak), 10-km cycling time trial (TT) and critical power (CP) tests pre- and post-SIT. SIT protocol included 4 × 30-s “all-out” cycling efforts against 7 % body mass interspersed with 4 min of active recovery performed twice per week for 4 weeks (eight sessions in total). Results There was no significant difference in V˙O2V˙O2 peak following SIT compared to the control period (control period: 31.7 ± 3.0 ml kg−1 min−1; post-SIT: 30.9 ± 4.5 ml kg−1 min−1; p > 0.05), but SIT significantly improved time to exhaustion (TTE) (control period: 710 ± 101 s; post-SIT: 798 ± 127 s; p = 0.00), 10-km cycling TT (control period: 1055 ± 129 s; post-SIT: 997 ± 110 s; p = 0.004) and CP (control period: 1.8 ± 0.3 W kg−1; post-SIT: 2.3 ± 0.6 W kg−1; p = 0.01). Conclusions These results demonstrate that young untrained females are responsive to SIT as measured by TTE, 10-km cycling TT and CP tests. However, eight sessions of SIT over 4 weeks are not enough to provide sufficient training stimulus to increase V˙O2V˙O2 peak.
Resumo:
Because children are becoming increasingly overweight, unhealthy and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-dependent learning and memory. Recent evidence extends this relationship to elderly humans by suggesting that high aerobic fitness levels in older adults are associated with increased hippocampal volume and superior memory performance. The present study aimed to further extend the link between fitness, hippocampal volume, and memory to a sample of preadolescent children. To this end, magnetic resonance imaging was employed to investigate whether high- and low-fit 9- and 10-year-old children showed differences in hippocampal volume and if the differences were related to performance on an item and relational memory task. Relational but not item memory is primarily supported by the hippocampus. Consistent with predictions, high-fit children showed greater bilateral hippocampal volumes. Furthermore, hippocampal volume was positively associated with performance on the relational but not the item memory task. The findings are the first to suggest that aerobic fitness can impact the structure and function of the developing human brain.
Resumo:
Research clearly shows that physical activity (PA) is an important factor to develop and maintain good health and adequate body functions in older people. In this context, the purpose of this study was to determine aerobic performance and morphological modifications after a 4 month physical activity program (PAP) in elderly. METHODS Forty subjects divided in two groups (control, n=20; and experimental, n=20) were evaluated twice, at the beginning and after a 4-month-activity program period. This program called “+ age + health” consists of 3 week sessions of one hour each, based on walking and aerobic exercises. The control group had, at its first evaluation, the followings characteristics: average body mass 68kg±15, 28±5 BMI, 37%±5 body fat, 2.2kg±0.4 bone mass, 42%±9 lean body mass and did 129 repetitions ± 46 on a 2-Minute Step Test (2MST). The assessment of anthropometric and morphological variables was measured through an electrical bioimpedance scale (TANITA - BC 545). Aerobic endurance was evaluated from a 2MST.RESULTS In the control group only the percentage of body fat changed significantly, and increased over time. In the experimental group we found a positive relationship between PAP and the majority of morphological variables. The percentage of variation changed in: body fat (-4.3%±7.6, p=0.014), bone mass (2.4%±3.1, p=0.004) and 2MST (33.6%±63.1, p=0.023). In the remaining variables there were no significant modifications. The significant modification in 2MST after the activity period means that the aerobic performance can be improved in elderly, and attenuates the negative effects of age. Moreover, the benefits of PAP can be seen by positive alterations registered in lean body mass and in the percentage of body fat.
Resumo:
Background: Chronic obstructive pulmonary disease (COPD) is a main risk for morbidity, associated with alterations in systemic inflammation. Recent studies proved that morbidity and mortality of COPD is related to systemic inflammation as it contributes to the pathogenesis of atherosclerosis and cardiovascular disease. However, increase of inflammatory cytokines adversely affects quality of life, alteration in ventilatory and skeletal muscles functions. Moreover, exercise training has many beneficial effects in correction of the adverse effects of COPD. Objective: This study aimed to compare the response of inflammatory cytokines of COPD to aerobic versus resisted exercises. Materials and methods: One hundred COPD diseased patients participated in this study and were randomly included in two groups; the first group received aerobic exercise, whereas the second group received resisted exercise training for 12 weeks. Results: The mean values of TNF-α, Il-2, IL-4, IL-6 and CRP were significantly decreased in both groups. Also; there was a significant difference between both groups at the end of the study with more reduction in patients who received aerobic exercise training. Conclusion: Aerobic exercise is more appropriate than resisted exercise training in modulating inflammatory cytokines level in patients with chronic obstructive pulmonary disease.
Resumo:
Background Aerobic endurance is an important aspect of physical fitness that enables individuals living with HIV to endure in the work place as well as in agricultural operations in order to earn a living and improve their quality of life. However, despite high HIV prevalence rates, the aerobic endurance status of young Malawians living with HIV remains unknown. The objective of this study was to determine the difference in VO2max between HIV-negative and HIV-positive individuals in Blantyre, Malawi. Methods Fifty five participants (17 males and 38 females) who have HIV and were not taking antiretroviral medication and 78 HIV-negative participants (45 males and 33 females) performed the Rockport submaximal treadmill exercise test. Measures of body weight, post-exercise heart rate and time to walk one mile were obtained and used to predict VO2max. Comparisons between groups were adjusted for age differences using analysis of covariance (ANCOVA). Results VO2max was significantly lower in HIV-positive subjects [31.1, 28.7 - 33.5mL.kg-1.min-1(mean, 95% CI)] compared with HIV-negative subjects [56.2, 54.3 - 58.1mL.kg-1.min-1]. Conclusion Aerobic endurance was markedly reduced in HIV-positive participants compared with HIV-negative participants. Findings of the current study implicate factors associated with the HIV infection as contributors to a decreased aerobic endurance in people living with HIV.
Resumo:
To investigate the validity and reliability of surface electromyography (EMG) as a new non-invasive determinant of the metabolic response to incremental exercise in elite cyclists. The relation between EMG activity and other more conventional methods for analysing the aerobic-anaerobic transition such as blood lactate measurements (lactate threshold (LT) and onset of blood lactate accumulation (OBLA)) and ventilatory parameters (ventilatory thresholds 1 and 2 (VT1 and VT2)) was studied.Twenty eight elite road cyclists (age 24 (4) years; VO2MAX 69.9 (6.4) ml/kg/min; values mean (SD)) were selected as subjects. Each of them performed a ramp protocol (starting at 0 W, with increases of 5 W every 12 seconds) on a cycle ergometer (validity study). In addition, 15 of them performed the same test twice (reliability study). During the tests, data on gas exchange and blood lactate levels were collected to determine VT1, VT2, LT, and OBLA. The root mean squares of EMG signals (rms-EMG) were recorded from both the vastus lateralis and the rectus femoris at each intensity using surface electrodes. Results - A two threshold response was detected in the rms-EMG recordings from both muscles in 90% of subjects, with two breakpoints, EMG(T1) and EMG(T2), at around 60-70% and 80-90% of VO2MAX respectively. The results of the reliability study showed no significant differences (p > 0.05) between mean values of EMG(T1) and EMG(T2) obtained in both tests. Furthermore, no significant differences (p > 0.05) existed between mean values of EMG(T1), in the vastus lateralis and rectus femoris, and VT1 and LT (62.8 (14.5) and 69.0 (6.2) and 64.6 (6.4) and 68.7 (8.2)% of VO2MAX respectively), or between mean values of EMG(T2), in the vastus lateralis and rectus femoris, and VT2 and OBLA (86.9 (9.0) and 88.0 (6.2) and 84.6 (6.5) and 87.7 (6.4)% of VO2MAX respectively). Rms-EMG may be a useful complementary non-invasive method for analysing the aerobic-anaerobic transition (ventilatory and lactate thresholds) in elite cyclists.
Resumo:
The purpose of this study was to establish the optimal allometric models to predict International Ski Federation’s ski-ranking points for sprint competitions (FISsprint) among elite female cross-country skiers based on maximal oxygen uptake (V̇O2max) and lean mass (LM). Ten elite female cross-country skiers (age: 24.5±2.8 years [mean ± SD]) completed a treadmill roller-skiing test to determine V̇O2max (ie, aerobic power) using the diagonal stride technique, whereas LM (ie, a surrogate indicator of anaerobic capacity) was determined by dual-emission X-ray anthropometry. The subjects’ FISsprint were used as competitive performance measures. Power function modeling was used to predict the skiers’ FISsprint based on V̇O2max, LM, and body mass. The subjects’ test and performance data were as follows: V̇O2max, 4.0±0.3 L min-1; LM, 48.9±4.4 kg; body mass, 64.0±5.2 kg; and FISsprint, 116.4±59.6 points. The following power function models were established for the prediction of FISsprint: 3.91×105 ∙ VO -6.002maxand 6.95×1010 ∙ LM-5.25; these models explained 66% (P=0.0043) and 52% (P=0.019), respectively, of the variance in the FISsprint. Body mass failed to contribute to both models; hence, the models are based on V̇O2max and LM expressed absolutely. The results demonstrate that the physiological variables that reflect aerobic power and anaerobic capacity are important indicators of competitive sprint performance among elite female skiers. To accurately indicate performance capability among elite female skiers, the presented power function models should be used. Skiers whose V̇O2max differs by 1% will differ in their FISsprint by 5.8%, whereas the corresponding 1% difference in LM is related to an FISsprint difference of 5.1%, where both differences are in favor of the skier with higher V̇O2max or LM. It is recommended that coaches use the absolute expression of these variables to monitor skiers’ performance-related training adaptations linked to changes in aerobic power and anaerobic capacity.
Resumo:
In this work the archaea and eubacteria community of a hypersaline produced water from the Campos Basin that had been transported and discharged to an onshore storage facility was evaluated by 16S recombinant RNA (rRNA) gene sequence analysis. The produced water had a hypersaline salt content of 10 (w/v), had a carbon oxygen demand (COD) of 4,300 mg/l and contains phenol and other aromatic compounds. The high salt and COD content and the presence of toxic phenolic compounds present a problem for conventional discharge to open seawater. In previous studies, we demonstrated that the COD and phenolic content could be largely removed under aerobic conditions, without dilution, by either addition of phenol degrading Haloarchaea or the addition of nutrients alone. In this study our goal was to characterize the microbial community to gain further insight into the persistence of reservoir community members in the produced water and the potential for bioremediation of COD and toxic contaminants. Members of the archaea community were consistent with previously identified communities from mesothermic reservoirs. All identified archaea were located within the phylum Euryarchaeota, with 98 % being identified as methanogens while 2 % could not be affiliated with any known genus. Of the identified archaea, 37 % were identified as members of the strictly carbon-dioxide-reducing genus Methanoplanus and 59 % as members of the acetoclastic genus Methanosaeta. No Haloarchaea were detected, consistent with the need to add these organisms for COD and aromatic removal. Marinobacter and Halomonas dominated the eubacterial community. The presence of these genera is consistent with the ability to stimulate COD and aromatic removal with nutrient addition. In addition, anaerobic members of the phyla Thermotogae, Firmicutes, and unclassified eubacteria were identified and may represent reservoir organisms associated with the conversion hydrocarbons to methane.
Resumo:
The segment of the world population showing permanent or temporary lactose intolerance is quite significant. Because milk is a widely consumed food with an high nutritional value, technological alternatives have been sought to overcome this dilemma. Microfiltration combined with pasteurization can not only extend the shelf life of milk but can also maintain the sensory, functional, and nutritional properties of the product. This studied developed a pasteurized, microfiltered, lactose hydrolyzed (delactosed) skim milk (PMLHSM). Hydrolysis was performed using β-galactosidase at a concentration of 0.4mL/L and incubation for approximately 21h at 10±1°C. During these procedures, the degree of hydrolysis obtained (>90%) was accompanied by evaluation of freezing point depression, and the remaining quantity of lactose was confirmed by HPLC. Milk was processed using a microfiltration pilot unit equipped with uniform transmembrane pressure (UTP) ceramic membranes with a mean pore size of 1.4 μm and UTP of 60 kPa. The product was submitted to physicochemical, microbiological, and sensory evaluations, and its shelf life was estimated. Microfiltration reduced the aerobic mesophilic count by more than 4 log cycles. We were able to produce high-quality PMLHSM with a shelf life of 21 to 27d when stored at 5±1°C in terms of sensory analysis and proteolysis index and a shelf life of 50d in regard to total aerobic mesophile count and titratable acidity.
Resumo:
Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions.