860 resultados para ADD-DROP FILTERS
Resumo:
This study investigated methyl methacrylate – polymethyl methacrylate powder bed interactions through droplet analyses, using model fluids and commercially available bone cement. The effects of storage temperature of liquid monomer and powder packing configuration on drop penetration time were investigated. Methyl methacrylate showed much more rapid imbibition than caprolactone due to decrease in both contact angle and fluid viscosity. Drop penetration of caprolactone through polymethyl methacrylate increased with decrease in bed macro-voids and increase in bulk density as predicted by the modified constant drawing area penetration model and confirmed by drop penetration images. Linear relationships were found between droplet mass and drawing area with imbibition time. Further experiments showed gravimetric analysis of the polymerised methyl methacrylate – polymethyl methacrylate matrix under various storage temperatures correlated with Reynolds number and Washburn analyses. These observations have direct implications for the design of mixing and delivery systems for acrylic bone cements used in orthopaedic surgery.
Resumo:
Estimation and detection of the hemodynamic response (HDR) are of great importance in functional MRI (fMRI) data analysis. In this paper, we propose the use of three H 8 adaptive filters (finite memory, exponentially weighted, and time-varying) for accurate estimation and detection of the HDR. The H 8 approach is used because it safeguards against the worst case disturbances and makes no assumptions on the (statistical) nature of the signals [B. Hassibi and T. Kailath, in Proc. ICASSP, 1995, vol. 2, pp. 949-952; T. Ratnarajah and S. Puthusserypady, in Proc. 8th IEEE Workshop DSP, 1998, pp. 1483-1487]. Performances of the proposed techniques are compared to the conventional t-test method as well as the well-known LMSs and recursive least squares algorithms. Extensive numerical simulations show that the proposed methods result in better HDR estimations and activation detections.
Resumo:
A new method for modeling-frequency-dependent boundaries in finite-difference time-domain (FDTD) and Kirchhoff variable digital waveguide mesh (K-DWM) room acoustics simulations is presented. The proposed approach allows the direct incorporation of a digital impedance filter (DIF) in the Multidimensional (2D or 3D) FDTD boundary model of a locally reacting surface. An explicit boundary update equation is obtained by carefully constructing a Suitable recursive formulation. The method is analyzed in terms of pressure wave reflectance for different wall impedance filters and angles of incidence. Results obtained from numerical experiments confirm the high accuracy of the proposed digital impedance filter boundary model, the reflectance of which matches locally reacting surface (LRS) theory closely. Furthermore a numerical boundary analysis (NBA) formula is provided as a technique for an analytic evaluation of the numerical reflectance of the proposed digital impedance filter boundary formulation.
Resumo:
One of the attractive features of sound synthesis by physical modeling is the potential to build acoustic-sounding digital instruments that offer more flexibility and different options in its design and control than their real-life counterparts. In order to develop such virtual-acoustic instruments, the models they are based on need to be fully parametric, i.e., all coefficients employed in the model are functions of physical parameters that are controlled either online or at the (offline) design stage. In this letter we show how propagation losses can be parametrically incorporated in digital waveguide string models with the use of zero-phase FIR filters. Starting from the simplest possible design in the form of a three-tap FIR filter, a higher-order FIR strategy is presented and discussed within the perspective of string sound synthesis with digital waveguide models.
Resumo:
The power-handling capabilities of helical resonator filters for space applications are discussed. Emerging difficulties due to the multipaction effects are highlighted. A method is proposed to increase specified power handling without significantly sacrificing the size/quality factor. Experimental verification is attained by means of a fabricated prototype for which measured filter response and multipaction test results are obtained and presented.
Resumo:
The purpose of this paper is to review recent developments in the design and fabrication of Frequency Selective Surfaces (FSS) which operate above 300 GHz. These structures act as free space electromagnetic filters and as such provide passive remote sensing instruments with multispectral capability by separating the scene radiation into separate frequency channels. Significant advances in computational electromagnetics, precision micromachining technology and metrology have been employed to create state of the art FSS which enable high sensitivity receivers to detect weak molecular emissions at THz wavelengths. This new class of quasi-optical filter exhibits an insertion loss
Resumo:
Novel V-band substrate integrated waveguide (SIW) filters have been presented. Design procedures for the filters synthesis and mechanisms providing quasi-elliptic response have been explained. The insertion loss of the filters has been measured below 2 dB with microstrip-to-SIW transitions being included.