911 resultados para ACTIVE FIBER COMPOSITE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes the modification of the commercial TFC-S nanofiltration membrane with shape-persistent dendritic architectures. Amphiphilic aromatic polyamide dendrimers (G1-G3) are synthesized via a divergent approach and used for membrane modification by direct percolation. The permeate samples collected from the percolation experiments are analyzed by UV-Vis spectroscopy to instantly monitor the influence of dendrimer generations on percolation behaviors and new active layer formation. The membrane structures are further characterized by Rutherford backscattering spectrometry (RBS) and atomic force microscopy (AFM) techniques, suggesting a low-level accumulation of dendrimers inside the TFC-S NF membranes and subsequent formation of an additional aramide dendrimer active layer. Thus, all the modified TFC-S membranes have a double active layer structure. A PES-PVA film is used as a control membrane showing that structural compatibility between the dendrimer and supports plays an important role in the membrane modification process. The performance of modified TFC-S membrane is evaluated on the basis of rejection abilities of a variety of water contaminants having a range of sizes and chemistry. As the water flux is inversely proportional to the thickness of the active layer, we optimize the amount of dendrimers deposited for specific contaminants to improve the solute rejection while maintaining high water flux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The World Health Organization (WHO, 2005) recommends consumption of fruits and vegetables as part of a healthy diet with daily recommendation of 5 servings or at least 400 g per day. Fruits and vegetables are good sources of vitamins, minerals, antioxidants, and fiber. Papaya fruit is known for his high nutrient and fiber content, and with few exceptions, it is generally consumed ripe due to its characteristic flavor and aroma. Digestion improvement has been attributed to consumption of papaya; this we speculate is attributed to the fiber content and proteolytic enzymes associated with this highly nutritious fruit. However, research is lacking that evaluates the impact of papaya fruit on human digestion. Papain is a proteolytic enzyme generally extracted from the latex of unripe papaya. Previous research has focused on evaluating papain activity from the latex of different parts of the plant; however there are no reports about papain activity in papaya pulp through fruit maturation. The activity of papain through different stages of ripeness of papaya and its capacity of dislodging meat bolus in an in vitro model was addressed. The objective of this study was to investigate whether papain activity and fiber content are responsible for the digestive properties attributed to papaya and to find a processing method that preserves papaya health properties with minimal impact on flavor. Our results indicated that papain was active at all maturation stages of the fruit. Ripe papaya pulp displayed the highest enzyme activity and also presented the largest meat bolus displacement. The in vitro digestion study indicated that ripe papaya displayed the highest protein digestibility; this is associated with proteolytic enzymes still active at the acidity of the stomach. Results from the in vitro fermentation study indicated that ripe papaya produced the highest amount of Short Chain Fatty Acids SCFA of the three papaya substrates (unripe, ripe, and processed). SCFA are the most important product of fermentation and are used as indicators of the amount of substrate fermented by microorganisms in the colon. The combination of proteolytic enzymes and fiber content found in papaya make of this fruit not only a potential digestive aid, but also a good source of SCFA and their associated potential health benefits. Irradiation processing had minimal impact on flavor compounds of papaya nectar. However, processed papaya experienced the lowest protein digestibility and SCFA production among the papaya substrates. Future research needs to explore new processing methods for papaya that minimize the detrimental impact on enzyme activity and SCFA production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este proyecto se analizaron las características y el modo de operación de las fibras ópticas plásticas en un enlace óptico WDM (Wavelenght Division Multiplexing) operando en el espectro visible. Se estudiaron los componentes activos y pasivos necesarios para el enlace, como son las fuentes LED, multiplexores, filtros y acopladores. Se analizaron los efectos no lineales que se pueden presentar en la fibra óptica, y que son importantes de considerar al transmitir señales WDM. Para respaldar el análisis se simuló en MATLAB un enlace óptico en el dominio de la frecuencia utilizando fuentes LED que emiten en el espectro visible, junto con multiplexores WDM, filtros de absorción, acopladores y como medio de transmisión la Fibra Óptica Plástica (POF -Plastic Optical Fiber).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evaluation of the mesh opening stiffness of fishing nets is an important issue in assessing the selectivity of trawls. It appeared that a larger bending rigidity of twines decreases the mesh opening and could reduce the escapement of fish. Nevertheless, netting structure is complex. A netting is made up of braided twines made of polyethylene or polyamide. These twines are tied with non-symmetrical knots. Thus, these assemblies develop contact-friction interactions. Moreover, the netting can be subject to large deformation. In this study, we investigate the responses of netting samples to different types of solicitations. Samples are loaded and unloaded with creep and relaxation stages, with different boundary conditions. Then, two models have been developed: an analytical model and a finite element model. The last one was used to assess, with an inverse identification algorithm, the bending stiffness of twines. In this paper, experimental results and a model for netting structures made up of braided twines are presented. During dry forming of a composite, for example, the matrix is not present or not active, and relative sliding can occur between constitutive fibres. So an accurate modelling of the mechanical behaviour of fibrous material is necessary. This study offers experimental data which could permit to improve current models of contact-friction interactions [4], to validate models for large deformation analysis of fibrous materials [1] on a new experimental case, then to improve the evaluation of the mesh opening stiffness of a fishing net