918 resultados para ACTIVATED PROTEIN-C


Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIM/HYPOTHESIS: IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. METHODS: Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. RESULTS: GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. CONCLUSIONS/INTERPRETATION: Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The collecting duct of normal kidney exhibits significant activity of the MEK1/2-ERK1/2 pathway as shown in vivo by immunostaining of phosphorylated active ERK1/2 (pERK1/2). The MEK1/2-ERK1/2 pathway controls many different ion transports both in proximal and distal nephron, raising the question of whether this pathway is involved in the basal and/or hormone-dependent transepithelial sodium reabsorption in the principal cell of the cortical collecting duct (CCD), a process mediated by the apical epithelial sodium channel and the basolateral sodium pump (Na,K-ATPase). To answer this question we used ex vivo microdissected CCDs from normal mouse kidney or in vitro cultured mpkCCDcl4 principal cells. Significant basal levels of pERK1/2 were observed ex vivo and in vitro. Aldosterone and vasopressin, known to up-regulate sodium reabsorption in CCDs, did not change ERK1/2 activity either ex vivo or in vitro. Basal and aldosterone- or vasopressin-stimulated sodium transport was down-regulated by the MEK1/2 inhibitor PD98059, in parallel with a decrease in pERK1/2 in vitro. The activity of Na,K-ATPase but not that of epithelial sodium channel was inhibited by MEK1/2 inhibitors in both unstimulated and aldosterone- or vasopressin-stimulated CCDs in vitro. Cell surface biotinylation showed that intrinsic activity rather than cell surface expression of Na,K-ATPase was controlled by pERK1/2. PD98059 also significantly inhibited the activity of Na,K-ATPase ex vivo. Our data demonstrate that the ERK1/2 pathway controls Na,K-ATPase activity and transepithelial sodium transport in the principal cell and indicate that basal constitutive activity of the ERK1/2 pathway is a critical component of this control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (<5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Disruption of the retinal pigment epithelial (RPE) barrier contributes to sub-retinal fluid and retinal oedema as observed in diabetic retinopathy. High placental growth factor (PLGF) vitreous levels have been found in diabetic patients. This work aimed to elucidate the influence of PLGF-1 on a human RPE cell line (ARPE-19) barrier in vitro and on normal rat eyes in vivo. METHODS: ARPE-19 permeability was measured using transepithelial resistance and inulin flux under stimulation of PLGF-1, vascular endothelial growth factor (VEGF)-E and VEGF 165. Using RT-PCR, we evaluated the effect of hypoxic conditions or insulin on transepithelial resistance and on PLGF-1 and VEGF receptors. The involvement of mitogen-activated protein kinase (MEK, also known as MAPK)/extracellular signal-regulated kinase (ERK, also known as EPHB2) signalling pathways under PLGF-1 stimulation was evaluated by western blot analysis and specific inhibitors. The effect of PLGF-1 on the external haemato-retinal barrier was evaluated after intravitreous injection of PLGF-1 in the rat eye; evaluation was by semi-thin analysis and zonula occludens-1 immunolocalisation on flat-mounted RPE. RESULTS: In vitro, PLGF-1 induced a reversible decrease of transepithelial resistance and enhanced tritiated inulin flux. These effects were specifically abolished by an antisense oligonucleotide directed at VEGF receptor 1. Exposure of ARPE-19 cells to hypoxic conditions or to insulin induced an upregulation of PLGF-1 expression along with increased transcellular permeability. The PLGF-1-induced RPE cell permeability involved the MEK signalling pathway. Injection of PLGF-1 in the rat eye vitreous induced an opening of the RPE tight junctions with subsequent sub-retinal fluid accumulation, retinal oedema and cytoplasm translocation of junction proteins. CONCLUSIONS/INTERPRETATION: Our results indicate that PLGF-1 may be a potential regulation target for the control of diabetic retinal and macular oedema.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: XG-102 (formerly D-JNKI1), a TAT-coupled dextrogyre peptide which selectively inhibits the c-Jun N-terminal kinase, is a powerful neuroprotectant in mouse models of middle cerebral artery occlusion (MCAo) with delayed intracerebroventricular injection. We aimed to determine whether this neuroprotection could also be achieved by intravenous injection of XG-102, which is a more feasible approach for future use in stroke patients. We also tested the compatibility of the compound with recombinant tissue plasminogen activator (rtPA), commonly used for intravenous thrombolysis and known to enhance excitotoxicity. METHODS: Male ICR-CD1 mice were subjected to a 30-min-suture MCAo. XG-102 was injected intravenously in a single dose, 6 h after ischemia. Hippocampal slice cultures were subjected to oxygen (5%) and glucose (1 mM) deprivation for 30 min. rtPA was added after ischemia and before XG-102 administration, both in vitro and in vivo. RESULTS: The lowest intravenous dose achieving neuroprotection was 0.0003 mg/kg, which reduced the infarct volume after 48 h from 62 +/- 19 mm(3) (n = 18) for the vehicle-treated group to 18 +/- 9 mm(3) (n = 5, p &lt; 0.01). The behavioral outcome was also significantly improved at two doses. Addition of rtPA after ischemia enhanced the ischemic damage both in vitro and in vivo, but XG-102 was still able to induce a significant neuroprotection. CONCLUSIONS: A single intravenous administration of XG-102 several hours after ischemia induces a powerful neuroprotection. XG-102 protects from ischemic damage in the presence of rtPA. The feasibility of systemic administration of this promising compound and its compatibility with rtPA are important steps for its development as a drug candidate in ischemic stroke.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have explored the threshold of tolerance of three unrelated cell types to treatments with potential cytoprotective peptides bound to Tat(48-57) and Antp(43-58) cell-permeable peptide carriers. Both Tat(48-57) and Antp(43-58) are well known for their good efficacy at crossing membranes of different cell types, their overall low toxicity, and their absence of leakage once internalised. Here, we show that concentrations of up to 100 microM of Tat(48-57) were essentially harmless in all cells tested, whereas Antp(43-58) was significantly more toxic. Moreover, all peptides bound to Tat(48-57) and Antp(43-58) triggered significant and length-dependent cytotoxicity when used at concentrations above 10 microM in all but one cell types (208F rat fibroblasts), irrespective of the sequence of the cargo. Absence of cytotoxicity in 208F fibroblasts correlated with poor intracellular peptide uptake, as monitored by confocal laser scanning fluorescence microscopy. Our data further suggest that the onset of cytotoxicity correlates with the activation of two intracellular stress signalling pathways, namely those involving JNK, and to a lesser extent p38 mitogen-activated protein kinases. These responses are of particular concern for cells that are especially sensitive to the activation of stress kinases. Collectively, these results indicate that in order to avoid unwanted and unspecific cytotoxicity, effector molecules bound to Tat(48-57) should be designed with the shortest possible sequence and the highest possible affinity for their binding partners or targets, so that concentrations below 10 microM can be successfully applied to cells without harm. Considering that cytotoxicity associated to Tat(48-57)- and Antp(43-58) bound peptide conjugates was not restricted to a particular type of cells, our data provide a general framework for the design of cell-penetrating peptides that may apply to broader uses of intracellular peptide and drug delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SCG10 is a neuron-specific, membrane-associated protein that is highly concentrated in growth cones of developing neurons. Previous studies have suggested that it is a regulator of microtubule dynamics and that it may influence microtubule polymerization in growth cones. Here, we demonstrate that in vivo, SCG10 exists in both phosphorylated and unphosphorylated forms. By two-dimensional gel electrophoresis, two phosphoisoforms were detected in neonatal rat brain. Using in vitro phosphorylated recombinant protein, four phosphorylation sites were identified in the SCG10 sequence. Ser-50 and Ser-97 were the target sites for protein kinase A, Ser-62 and Ser-73 for mitogen-activated protein kinase and Ser-73 for cyclin-dependent kinase. We also show that overexpression of SCG10 induces a disruption of the microtubule network in COS-7 cells. By expressing different phosphorylation site mutants, we have dissected the roles of the individual phosphorylation sites in regulating its microtubule-destabilizing activity. We show that nonphosphorylatable mutants have increased activity, whereas mutants in which phosphorylation is mimicked by serine-to-aspartate substitutions have decreased activity. These data suggest that the microtubule-destabilizing activity of SCG10 is regulated by phosphorylation, and that SCG10 may link signal transduction of growth or guidance cues involving serine/threonine protein kinases to alterations of microtubule dynamics in the growth cone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

GLUT8 is a high-affinity glucose transporter present mostly in testes and a subset of brain neurons. At the cellular level, it is found in a poorly defined intracellular compartment in which it is retained by an N-terminal dileucine motif. Here we assessed GLUT8 colocalization with markers for different cellular compartments and searched for signals, which could trigger its cell surface expression. We showed that when expressed in PC12 cells, GLUT8 was located in a perinuclear compartment in which it showed partial colocalization with markers for the endoplasmic reticulum but not with markers for the trans-Golgi network, early endosomes, lysosomes, and synaptic-like vesicles. To evaluate its presence at the plasma membrane, we generated a recombinant adenovirus for the expression of GLUT8 containing an extracellular myc epitope. Cell surface expression was evaluated by immunofluorescence microscopy of transduced PC12 cells or primary hippocampal neurons exposed to different stimuli. Those included substances inducing depolarization, activation of protein kinase A and C, activation or inhibition of tyrosine kinase-linked signaling pathways, glucose deprivation, AMP-activated protein kinase stimulation, and osmotic shock. None of these stimuli-induced GLUT8 cell surface translocation. Furthermore, when GLUT8myc was cotransduced with a dominant-negative form of dynamin or GLUT8myc-expressing PC-12 cells or neurons were incubated with an anti-myc antibody, no evidence for constitutive recycling of the transporter through the cell surface could be obtained. Thus, in cells normally expressing it, GLUT8 was associated with a specific intracellular compartment in which it may play an as-yet-uncharacterized role.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High consumption of fructose-sweetened beverages has been linked to a high prevalence of chronic metabolic diseases. We have previously shown that a short course of fructose supplementation as a liquid solution induces glucose intolerance in female rats. In the present work, we characterized the fructose-driven changes in the liver and the molecular pathways involved. To this end, female rats were supplemented or not with liquid fructose (10%, w/v) for 7 or 14 days. Glucose and pyruvate tolerance tests were performed, and the expression of genes related to insulin signaling, gluconeogenesis and nutrient sensing pathways was evaluated. Fructose-supplemented rats showed increased plasma glucose excursions in glucose and pyruvate tolerance tests and reduced hepatic expression of several genes related to insulin signaling, including insulin receptor substrate 2 (IRS-2). However, the expression of key gluconeogenic enzymes, glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, was reduced. These effects were caused by an inactivation of hepatic forkhead box O1 (FoxO1) due to an increase in its acetylation state driven by a reduced expression and activity of sirtuin 1 (SIRT1). Further contributing to FoxO1 inactivation, fructose consumption elevated liver expression of the spliced form of X-box-binding-protein-1 as a consequence of an increase in the activity of the mammalian target of rapamycin 1 and protein 38-mitogen activated protein kinase (p38-MAPK). Liquid fructose affects both insulin signaling (IRS-2 and FoxO1) and nutrient sensing pathways (p38-MAPK, mTOR and SIRT1), thus disrupting hepatic insulin signaling without increasing the expression of key gluconeogenic enzymes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transcription factors CCAAT/enhancer binding protein (C/EBP)-beta and -delta are key regulators for the expression of the acute phase genes in the liver, such as complement component C3 and antichymotrypsin. In the brain, these acute phase proteins are produced in response to pro-inflammatory cytokines by the reactive astrocytes, in particular those surrounding the amyloid plaques of Alzheimer's disease brains. Here we show that lipopolysaccharides (LPS), IL-1beta, and TNFalpha induce the expression of the c/ebpbeta and -delta genes in mouse primary astrocytes. This induction precedes the expression of the acute phase genes coding for the complement component C3 and the mouse homologue of antichymotrypsin. The induction of these two acute phase genes by LPS is blocked by cycloheximide, whereas this protein synthesis inhibitor does not affect the expression of the c/ebp genes. Altogether, our data support a role as immediate-early genes for c/ebpbeta and -delta, whose expression is induced by pro-inflammatory cytokines in mouse cortical astrocytes. In the liver, these transcription factors are known to play an important role in inflammation and energy metabolism regulation. Therefore, C/EBPbeta and -delta could be pivotal transcription factors involved in brain inflammation, in addition to their previously demonstrated role in brain glycogen metabolism regulation (Cardinaux and Magistretti. J Neurosci 16:919-929, 1996).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: We explored the potential adverse effects of pro-atherogenic oxidised LDL-cholesterol particles on beta cell function. MATERIALS AND METHODS: Isolated human and rat islets and different insulin-secreting cell lines were incubated with human oxidised LDL with or without HDL particles. The insulin level was monitored by ELISA, real-time PCR and a rat insulin promoter construct linked to luciferase gene reporter. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Prolonged incubation with human oxidised LDL particles led to a reduction in preproinsulin expression levels, whereas the insulin level was preserved in the presence of native LDL-cholesterol. The loss of insulin production occurred at the transcriptional levels and was associated with an increase in activator protein-1 transcriptional activity. The rise in activator protein-1 activity resulted from activation of c-Jun N-terminal kinases (JNK, now known as mitogen-activated protein kinase 8 [MAPK8]) due to a subsequent decrease in islet-brain 1 (IB1; now known as MAPK8 interacting protein 1) levels. Consistent with the pro-apoptotic role of the JNK pathway, oxidised LDL also induced a twofold increase in the rate of beta cell apoptosis. Treatment of the cells with JNK inhibitor peptides or HDL countered the effects mediated by oxidised LDL. CONCLUSIONS/INTERPRETATION: These data provide strong evidence that oxidised LDL particles exert deleterious effects in the progression of beta cell failure in diabetes and that these effects can be countered by HDL particles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Activation of Fas (CD95) by its ligand (FasL) rapidly induces cell death through recruitment and activation of caspase-8 via the adaptor protein Fas-associated death domain protein (FADD). However, Fas signals do not always result in apoptosis but can also trigger a pathway that leads to proliferation. We investigated the level at which the two conflicting Fas signals diverge and the protein(s) that are implicated in switching the response. RESULTS: Under conditions in which proliferation of CD3-activated human T lymphocytes is increased by recombinant FasL, there was activation of the transcription factors NF-kappaB and AP-1 and recruitment of the caspase-8 inhibitor and FADD-interacting protein FLIP (FLICE-like inhibitory protein). Fas-recruited FLIP interacts with TNF-receptor associated factors 1 and 2, as well as with the kinases RIP and Raf-1, resulting in the activation of the NF-kappaB and extracellular signal regulated kinase (Erk) signaling pathways. In T cells these two signal pathways are critical for interleukin-2 production. Increased expression of FLIP in T cells resulted in increased production of interleukin-2. CONCLUSIONS: We provide evidence that FLIP is not simply an inhibitor of death-receptor-induced apoptosis but that it also mediates the activation of NF-kappaB and Erk by virtue of its capacity to recruit adaptor proteins involved in these signaling pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acquisition of a mature dendritic morphology is critical for neural information processing. In particular, hepatocyte growth factor (HGF) controls dendritic arborization during brain development. However, the cellular mechanisms underlying the effects of HGF on dendritic growth remain elusive. Here, we show that HGF increases dendritic length and branching of rat cortical neurons through activation of the mitogen-activated protein kinase (MAPK) signaling pathway. Activation of MAPK by HGF leads to the rapid and transient phosphorylation of cAMP response element-binding protein (CREB), a key step necessary for the control of dendritic development by HGF. In addition to CREB phosphorylation, regulation of dendritic growth by HGF requires the interaction between CREB and CREB-regulated transcription coactivator 1 (CRTC1), as expression of a mutated form of CREB unable to bind CRTC1 completely abolished the effects of HGF on dendritic morphology. Treatment of cortical neurons with HGF in combination with brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family that regulates dendritic development via similar mechanisms, showed additive effects on MAPK activation, CREB phosphorylation and dendritic growth. Collectively, these results support the conclusion that regulation of cortical dendritic morphology by HGF is mediated by activation of the MAPK pathway, phosphorylation of CREB and interaction of CREB with CRTC1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dose-escalated radiation therapy for localized prostate cancer (PCa) has a clear therapeutic benefit; however, escalated doses may also increase injury to noncancerous tissues. Radiosensitizing agents can improve ionizing radiation (IR) potency, but without targeted delivery, these agents will also sensitize surrounding normal tissues. Here we describe the development of prostate-targeted RNAi agents that selectively sensitized prostate-specific membrane antigen–positive (PSMA-positive) cells to IR. siRNA library screens identified DNA-activated protein kinase, catalytic polypeptide (DNAPK) as an ideal radiosensitization target. DNAPK shRNAs, delivered by PSMA-targeting RNA aptamers, selectively reduced DNAPK in PCa cells, xenografts, and human prostate tissues. Aptamer-targeted DNAPK shRNAs, combined with IR, dramatically and specifically enhanced PSMA-positive tumor response to IR. These findings support aptamer-shRNA chimeras as selective sensitizing agents for the improved treatment of high-risk localized PCa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Modulation of signalling pathways can trigger different cellular responses, including differences in cell fate. This modulation can be achieved by controlling the pathway activity with great precision to ensure robustness and reproducibility of the specification of cell fate. The development of the photoreceptor R7 in the Drosophila melanogasterretina has become a model in which to investigate the control of cell signalling. During R7 specification, a burst of Ras small GTPase (Ras) and mitogen-activated protein kinase (MAPK) controlled by Sevenless receptor tyrosine kinase (Sev) is required. Several cells in each ommatidium express sev. However, the spatiotemporal expression of the boss ligand and the action of negative regulators of the Sev pathway will restrict the R7 fate to a single cell. The Drosophila suppressor of cytokine signalling 36E (SOCS36E) protein contains an SH2 domain and acts as a Sev signalling attenuator. By contrast, downstream of receptor kinase (Drk), the fly homolog of the mammalian Grb2 adaptor protein, which also contains an SH2 domain, acts as a positive activator of the pathway. Here, we apply the Förster resonance energy transfer (FRET) assay to transfected Drosophila S2 cells and demonstrate that Sev binds directly to either the suppressor protein SOCS36E or the adaptor protein Drk. We propose a mechanistic model in which the competition between these two proteins for binding to the same docking site results in either attenuation of the Sev transduction in cells that should not develop R7 photoreceptors or amplification of the Ras-MAPK signal only in the R7 precursor.