680 resultados para 889
Resumo:
von Johann Obrist
Resumo:
Background. There are 200,000 HIV/HCV co-infected people in the US and IDUs are at highest risk of exposure. Between 52-92% of HIV infected IDUs are chronically infected with HCV. African Americans and Hispanics bear the largest burden of co-infections. Furthermore HIV/HCV co-infection is associated with high morbidity and mortality if not treated. The present study investigates the demographic, sexual and drug related risk factors for HIV/HCV co-infection among predominantly African American injecting and non-injecting drug users living in two innercity neighborhoods in Houston, Texas. ^ Methods. This secondary analysis used data collected between February 2004 and June 2005 from 1,889 drug users. Three case-comparison analyses were conducted to investigate the risk factors for HIV/HCV co-infection. HIV mono-infection, HCV mono-infection and non-infection were compared to HIV/HCV co-infection to build multivariate logistic regression models. Race/ethnicity and age were forced into each model regardless of significance in the univariate analysis. ^ Results. The overall prevalence of HIV/HCV co-infection was 3.9% while 39.8% of HIV infected drug users were co-infected with HCV and 10.7% of HCV infected drug users were co-infected with HIV. Among HIV infected IDUs the prevalence of HCV was 71.7% and among HIV infected NIDUs the prevalence of HCV was 24%. In the multivariate analysis, HIV/HCV co-infection was associated with injecting drug use when compared to HIV mono-infection, with MSM when compared to HCV mono-infection and with injecting drug use as well as MSM when compared to non-infection. ^ Conclusion. HIV/HCV co-infection was associated with a combination of sexual and risky injecting practices. More data on the prevalence and risk factors for co-infection among minority populations is urgently needed to support the development of targeted interventions and treatment options. Additionally there should be a focus on promoting safer sex and injecting practices among drug users as well as the expansion of routine testing for HIV and HCV infections in this high risk population.^
Resumo:
The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.
Resumo:
The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.
Resumo:
The basaltic rocks of Hole 794D drilled during Leg 128 are strongly altered. Microprobe analyses and XRD spectra on small quantities of matter extracted from thin sections show that primary minerals and glassy zones of the groundmass are totally or partially replaced by clay minerals with chlorite/saponite mixed-layer composition whatever the rock sample considered. This mixed-layer was also identified in veins and vesicles where it crystallizes in spheroidal aggregates. The largest veins and vesicles are filled by a zoned deposit: the chlorite/saponite mixed-layer always occupies the central part and is rimmed by pure saponite. Calcite crystallizes in secondary fractures which crosscut the clayey veins and vesicles. Chemographic analysis based on the M+-4Si-3R2+ projection shows that the chemical composition of the saponite component in the mixed-layer is identical to that of the free saponite. This indicates that the clay mineral crystallization was controlled by the chemical composition of the alteration fluids. From petrographic evidence, it is suggested that both chlorite/saponite mixed-layer and free saponite belong to the same hydrothermal event and are produced by a temperature decrease. This is supported by the stable isotopic data. The isotopic data show very little variation: d18O saponite ranges from 13.1 per mil to 13.5 per mil, and dD saponite from -73.6 per mil to -70.0 per mil. d18O calcite varies from +19.7 per mil to +21.9 per mil vs SMOW and d13C from -3.2 per mil to +0.4 per mil vs. PDB. These values are consistent with seawater alteration of the basalt. The formation of saponite took place at 150°-180°C and the formation of calcite at about 65°C.
Resumo:
An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.