953 resultados para 670999 Ceramics, glass and industrial mineral products not elsewhere classified
Resumo:
Sunscreen skin penetration and safety assessment should be considered together in order to ensure that in vitro cytotoxicity studies examine relevant doses of these organic chemical UV filters to which viable epidermal cells are realistically exposed. In this study, we sought to determine whether sufficient topically applied sunscreens penetrated into human viable epidermis to put the local keratinocyte cell populations at risk of toxicity. The penetration and retention of five commonly used sunscreen agents ( avobenzone, octinoxate, octocrylene, oxybenzone and padimate O) in human skin was evaluated after application in mineral oil to isolated human epidermal membranes. Sunscreen concentration - human keratinocyte culture response curves were then defined using changes in cell morphology and proliferation ( DNA synthesis using radiolabelled thymidine uptake studies) as evidence of sunscreens causing toxicity. Following 24 h of human epidermal exposure to sunscreens, detectable amounts of all sunscreens were present in the stratum corneum and viable epidermis, with epidermal penetration most evident with oxybenzone. The concentrations of each sunscreen found in human viable epidermis after topical application, adjusting for skin partitioning and binding effects, were at least 5-fold lower, based on levels detected in viable epidermal cells, than those appearing to cause toxicity in cultured human keratinocytes. It is concluded that the human viable epidermal levels of sunscreens are too low to cause any significant toxicity to the underlying human keratinocytes. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Sucrose isomerase (SI) genes from Pantoea dispersa UQ68J, Klebsiella planticola UQ14S, and Erwinia rhapontici WAC2928 were cloned and expressed in Escherichia coli. The predicted products of the UQ14S and WAC2928 genes were similar to known SIs. The UQ68J SI differed substantially, and it showed the highest isomaltulose-producing efficiency in E. coli cells. The purified recombinant WAC2928 SI was unstable, whereas purified UQ68J and UQ14S SIs were very stable. UQ68J SI activity was optimal at pH 5 and 30 to 35 degrees C, and it produced a high ratio of isomaltulose to trehalulose (> 22:1) across its pH and temperature ranges for activity (pH 4 to 7 and 20 to 50 degrees C). In contrast, UQ14S SI showed optimal activity at pH 6 and 35 degrees C and produced a lower ratio of isomaltulose to trehalulose (< 8:1) across its pH and temperature ranges for activity. UQ68J SI had much higher catalytic efficiency; the K-m was 39.9 mM, the V-max was 638 U mg(-1), and the K-cat/K-m was 1.79 x 104 M-1 s(-1), compared to a K-m of 76.0 mM, a V-max. of 423 U mg(-1), and a K-cat/K-m of 0.62 x 104 M-1 s(-1) for UQ14S SI. UQ68J SI also showed no apparent reverse reaction producing glucose, fructose, or trehalulose from isomaltulose. These properties of the P. dispersa UQ68J enzyme are exceptional among purified SIs, and they indicate likely differences in the mechanism at the enzyme active site. They may favor the production of isomaltulose as an inhibitor of competing microbes in high-sucrose environments, and they are likely to be highly beneficial for industrial production of isomaltulose.
Resumo:
Bone mineral density (BMD) may be associated with hearing loss in older adults. Demineralization of the cochlear capsule has been associated with hearing loss in those with Paget's disease of the bone and otosclerosis. Osteoporosis may also result in cochlear capsule demineralization. We hypothesized that lower hip BMD and lower heel ultrasound measurements would be associated with hearing loss in a population-based sample of 2,089 older black and white men and women. Bone parameters and hearing function were measured at the fourth clinical follow-up visit. Audiometric threshold testing was used to measure air- and bone-conduction hearing sensitivity. BMD of the hip and its subregions was measured using dual-energy X-ray absorptiometry. Calcaneal bone measurements [broadband ultrasound attenuation (BUA), speed of sound (SOS) and the quantitative ultrasound index (QUI)] were obtained using heel ultrasound. After adjusting for known hearing loss risk factors, no association was found between hearing and any of the bone measurements in whites and black women. In black men, however, lower hip BMD was associated with higher odds of hearing loss; for each standard deviation decrease in total hip BMD, the odds of hearing loss were 1.41 (95% confidence interval 1.08, 1.83), 1.39 (95% CI 1.07, 1.82) for femoral neck BMD and 1.65 (95% CI 1.26, 2.16) for trochanter BMD. Conductive hearing loss was associated with lower heel ultrasound measurements, though only among white men. The results of this study are mixed and inconclusive. Lower BMD of the hip and its subregions was associated with hearing loss among black men, but not among whites or black women. Lower measurements on heel ultrasound were associated with conductive hearing loss, though only among white men. These results suggest that axial and appendicular bone parameters may be modestly associated with hearing loss in older men, but not in women.
Resumo:
The aim of this in vitro study was to evaluate the fracture load and marginal accuracy of crowns made from a shrinkage-free ZrSiO4 ceramic cemented with glass-ionomer or composite cement after chewing simulation. Thirty-two human mandibular molars were randomly divided into two groups. All teeth were prepared for and restored with shrinkage-free ZrSiO4 ceramic crowns (Everest HPC (R), KaVo). The crowns of group A (N = 16) were luted to the teeth using KetacCem (R) and group B (N = 16) were adhesively cemented using Panavia (R) 21EX. Measurements of the marginal accuracy before and after cementation were made using replicas and an image analysis system. All specimens were exposed to 1.2 million cycles of thermo-mechanical fatigue in a chewing simulator. Surviving specimens were subsequently loaded until fracture in a static testing device. Fracture loads (N) were recorded. All specimens survived chewing simulation. The mean fracture loads (+/- s.d.) were Group A, 1622 N (+/- 433); group B, 1957 N (+/- 806). There was no significant difference between the two groups (P > 0.05). The marginal gap values before cementation were (mean +/- s.d.): Group A, 32.7 mu m (+/- 6.8); group B, 33.0 mu m (+/- 6.7).The mean marginal gap values after cementation were (+/- s.d.): Group A, 44.6 mu m (+/- 6.7); group B, 46.6 mu m (+/- 7.7). The marginal openings were significantly higher after cementation for both groups (P < 0.05). All test groups demonstrated fracture load and marginal accuracy values within the range of clinical acceptability.
Resumo:
The work presented was conducted within the scope of a larger study investigating impacts of the Stuart Oil Shale project, a facility operating to the north of the industrial city of Gladstone, Australia. The aims of the investigations were threefold: (a) the identification of the plant signatures in terms of particle size distributions in the submicrometer range (13-830 nm) through stack measurements, (b) exploring the applicability of these signatures in tracing the source contributions at locations of interest, at a distance from the plant, and (c) assessing the contribution of the plant to the total particle number concentration at locations of interest. The stack measurements conducted for three different conditions of plant operation showed that the particle size distributions were bimodal with average modal count median diameters (CMDs) of 24 (SD 4) and 52 (SD 9) nm. The average of all the particle size distributions recorded within the plant sector at a site located 4.5 km from the plant, over the sampling period when the plant was operating, also showed a bimodal distribution. The modal CMDs in this case were 27 and 50 nm, similar to those at the stack. This bimodal size distribution is distinct from the size distribution of the most common ambient anthropogenic emission source, which is vehicle emissions, and can be considered as a signature of this source. The average contribution of the plant (for plant sector winds) was estimated to be (10.0 +/- 3.8) x 10(2) particles cm(-3) and constituted approximately a 50% increase over the local particle ambient concentration for plant sector winds. This increase in particle number concentration compared to the local background concentration, while high compared to the clean environment concentration, is not significant when compared to concentrations generally encountered in the urban environment of Brisbane.
Colour removal from industrial wastewater by using the combination of UV/H2O2 and Biological Process
Resumo:
Mõssbauer spectroscopy and X-ray diffraction of five coals revealed the presence of pyrite, illite, kaolinite and Quartz, together with other minor phases. Analysis of the coal ashes indicated the formation of hematite and an Fe (3+) paramagnetic phase, the latter resulting from .the dehydroxylation of the clay minerals during ashing at 700 to 750 C. By using a combination of several physicochemical methods, different successive stages of dehydroxylation, structural consolidation, and recrystallisation of illite, montmorillonite and hectorite upon thermal treatment to 1300 C were investigated. Dehydroxylation of the clay minerals occurred between 450 and 750 C, the X-ray crysdallinity of illite and montmorillonite remaining until 800 C. Hectorite gradually recrystallises to enstatite at temperatures above 700°C. At 900 C the crystalline structure of all three clay minerals had totally collapsed. Solid state reactions occurred above 900 C producing such phases as spinel, hematite, enstatite, cristobalite and mullite. Illite and montmorillonite started to melt between 1200 and 1300°C, producing a silicate glass that contained Fe(3+) and Fe(2+) ions. Ortho-pnstatite, clino-enstatite and proto-enstatite were identified in the thermal products of hectorite, their relative proportions varying with temperature. Protoenstatite was stabilised with respect to metastable clinoenstatite upon cooling from 12000 C by the presence of exchanged transition metal cations. Solid state Nuclear Magnetic Resonance spectroscopy of thermally treated transition metal exchanged hectorite indicated the levels at which paramagnetic cations could be loaded on to the clay before spectral resolution is significantly diminished.
Resumo:
This thesis proposes a conceptual framework for the analysis of organizational environments. Three primary segments of the task environment - the transaction environment, the industrial environment and the ecotone are delineated. The interrelationships between the organization and these three environmental segments are examined. It is suggested that the task environment i) defines the nature of the task confronting the organization and the economic, political and social position of the organization within this network; ii) influences the way organizations and industries are organized; iii) prevents recognition of the need for adaptation and change; and iv) limits the alternatives available to the organization should changes in the environment render existing technology, behaviour and structures obsolete. The British Footwear Industry provides an example of how this framework might be used to investigate the problem of industry decline and organization viability. It is argued that the explanations usually put forth to explain organization failure and industrial decline have not taken into consideration the environmental factors which affect organization and industry viability. The shift from national markets to global markets has altered the composition of the task environment and has changed the nature of competition from firm versus firm to environment versus environment. Organizations do not compete in the market, their products do. These products are often produced by organizations embedded in environments which are significantly different from the one in which the focal organization and industry are embedded.
Resumo:
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.