990 resultados para 63 %, 1 sigma
Resumo:
Biostratigraphic, sedimentologic, and geochemical analyses of hemipelagic periplatform sediments from shallow gravity cores taken during the Ocean Drilling Program Leg 194 site survey reveal that, despite the strong currents and almost infilled intraplatform bathymetric depressions, recent sedimentation at the location of the Leg 194 drill sites recorded glacial-interglacial cycles. Sediment analyses included determination of sediment type, carbonate content, bulk stable oxygen isotope composition, and calcareous nannofossil zones. Glacial periods, identified by elevated bulk d18O, are characterized by darker sediment color, coarser grain size, and lower carbonate content, whereas interglacial periods yield lighter-colored, finer, and carbonate-rich sediments. These data from the shallowmost few meters of Marion Plateau sediments complement the subsurface information of Leg 194 holes, in which the top few meters have not been analyzed in such a high-resolution fashion. In addition, these gravity cores are more likely to have recovered the sediments closest to the sediment/water interface as compared to the hydraulic piston cores collected during Leg 194.
Resumo:
Se analizó el impacto de un programa de entrenamiento de flexibilidad sobre el desarrollo de la fuerza muscular en 16 jugadores de futbol con edad de 19.032.7 años. Se entrenó durante 30 días y 5 veces por semanas, donde el grupo "A" realizó entrenamiento de flexibilidad, mientras que "B" el entrenamiento regular. Se midió la flexibilidad, 1RM, salto vertical, peso, talla, circunferencia de pantorrilla y muslo. Los resultados muestran valores para A y B respectivamente, donde el IGF fue de 91.01 18.3 y 111.93 23.5; 78.22 29, y 79.03 29.1. La circunferencia femoral, 48.04 3.6 cms y 49.54 3.4 cms.; 47.56 4.9 y 47.89 5.2. Circunferencia de pantorrilla, 33.83 2.7 cm y 35.21 2.4 cm; 33.83 2 y 33.73 2.8. Fuerza 48.13 7.8 Kg. y 53.38 8.2 Kg.; 52.63 8.6 Kg. y 53.39 9.1 Kg. Potencia anaeróbica, 34.13 2.9 cm. y 36.63 1.7 cm; 38.25 4.7 y 37.06 3.4. Como conclusión se tiene que el uso la flexibilidad impacta de forma positiva en el IGF y por tanto en el desarrollo favorable muscular de jugadoras de fútbol.
Resumo:
Deep-sea pore fluids are potential archives of ancient seawater chemistry. However, the primary signal recorded in pore fluids is often overprinted by diagenetic processes. Recent studies have suggested that depth profiles of Mg concentration in deep-sea carbonate pore fluids are best explained by a rapid rise in seawater Mg over the last 10-20 Myr. To explore this possibility we measured the Mg isotopic composition of pore fluids and carbonate sediments from Ocean Drilling Program (ODP) site 807. Whereas the concentration of Mg in the pore fluid declines with depth, the isotopic composition of Mg in the pore fluid increases from -0.78 per mil near the sediment-water interface to -0.15 per mil at 778 mbsf. The Mg isotopic composition of the sediment, with few important exceptions, does not change with depth and has an average d26Mg value of -4.72 per mil. We reproduce the observed changes in sediment and pore-fluid Mg isotope values using a numerical model that incorporates Mg, Ca and Sr cycling and satisfies existing pore-fluid Ca isotope and Sr data. Our model shows that the observed trends in magnesium concentrations and isotopes are best explained as a combination of two processes: a secular rise in the seawater Mg over the Neogene and the recrystallization of low-Mg biogenic carbonate to a higher-Mg diagenetic calcite. These results indicate that burial recrystallization will add Mg to pelagic carbonate sediments, leading to an overestimation of paleo-temperatures from measured Mg/Ca ratios. The Mg isotopic composition of foraminiferal calcite appears to be only slightly altered by recrystallization making it possible to reconstruct the Mg isotopic composition of seawater through time.
Resumo:
Benthic foraminiferal d18O and Mg/Ca of sediment cores off tropical NW Africa are used to study the properties of Atlantic central waters during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS1). We combined our core top data with published results to develop a new Mg/Ca-temperature calibration for Planulina ariminensis, which shows a Mg/Ca-temperature sensitivity of 0.19 mmol/mol per °C. Estimates of the LGM and HS1 thermocline temperatures are comparable to the present-day values between 200 and 400 m water depth, but were 1.2-1.5°C warmer at 550-570 m depth. The HS1 thermocline waters (200-570 m depth) did not show any warming relative to the LGM. This is in contrast to previous climate model studies, which concluded that tropical Atlantic thermocline waters warmed significantly when Atlantic meridional overturning circulation was reduced. However, our results suggest that thermocline temperatures of the northeastern tropical Atlantic show no pronounced sensitivity to changes in the thermohaline circulation during glacial periods. In contrast, we find a significant increase in thermocline-water salinity during the LGM (200-550 m depth) and HS1 (200-400 m depth) with respect to the present-day, which we relate to changes in the wind-driven circulation. We infer that the LGM thermocline (200-550 m depth) and the HS1 upper thermocline (200-400 m depth) in the northeastern tropical Atlantic was ventilated by surface waters from the North Atlantic rather than the southern-sourced waters. This suggests that the frontal zone between the modern South Atlantic and North Atlantic Central Waters was probably shifted southward during the LGM and HS1.
Resumo:
Isotopic characterization of carbon in the dissolved inorganic carbon (DIC) pool is fundamental for a wide array of scientific studies directly related to gas hydrate research. In order to generate integrated and internally consistent data of d13C of DIC in pore waters from Hydrate Ridge, we used the modern continuous flow technology of a GasBench II automated sampler interfaced to a gas source stable isotope mass spectrometer for the rapid determination (~80 samples/day) of d13C DIC in small-volume water samples. The overall precision of this technique is conservatively estimated to be better than ±0.15 per mil (1 sigma), which is similar to the precision of methods in current use. Here we present the data generated from Ocean Drilling Program Leg 204 pore water samples.
Resumo:
A high-resolution sedimentary record from the subarctic Malangen fjord in northern Norway, northeastern North Atlantic has been investigated in order to reconstruct variations in influx of Atlantic Water for the last 2000 years. The fjord provides a regional oceanographic climatic signal reflecting changes in the North Atlantic heat flux at this latitude because of its deep sill and the relatively narrow adjoining continental shelf. The reconstructions are based on oxygen and carbon isotopic studies of benthic foraminifera from a high accumulation basin in the Malangen fjord, providing subdecadal time resolution. A comparison between instrumental measurements of bottom water temperatures at the core location and the reconstructed temperatures from benthic foraminiferal d18O for the same time period demonstrates that the stable isotope values reflect the bottom water temperatures very well. The reconstructed temperature record shows an overall decline in temperature of c. 1°C from c. 40 BC to ad 1350. This cooling trend is assumed to be driven by an orbital forced reduction in insolation. Superimposed on the general cooling trend are several periods of warmer or colder temperatures. The long-term fluctuations in the Malangen fjord are concurrent with fluctuations of Atlantic Water in the northern North Atlantic. Although they are not directly comparable, comparisons of atmospheric temperatures and marine records, indicate a close coupling between the climate systems. After ad l800 the record shows an unprecedented warming within the last 2000 years.
Resumo:
A marine sediment core from the leeward margin of Great Bahama Bank (GBB) was subjected to a multiproxy study. The aragonite dominated core MD992201 comprises the past 7230 years in a decadal time resolution and shows sedimentation rates of up to 13.8 m/kyr. Aragonite mass accumulation rates, age differences between planktonic foraminifera and aragonite sediments, and temperature distribution are used to deduce changes in aragonite production rates and paleocurrent strengths. Aragonite precipitation rates on GBB are controlled by exchange of carbonate ions and CO2 loss due to temperature-salinity conditions and biological activity, and these are dependent on the current strength. Paleocurrent strengths on GBB show high current velocities during the periods 6000-5100 years BP, 3500-2700 years BP, and 1600-700 years BP; lower current speeds existed during the time intervals 5100-3500 years BP, 2700-1600 years BP, and 700-100 years BP. Bahamian surface currents are directly linked to the North Atlantic atmospheric circulation, and thus periods with high (low) current speeds are proposed to be phases of strong (weak) atmospheric circulation.
Resumo:
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice-rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner-fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.
Resumo:
The technique of 40Ar-39Ar step-heating dating was applied to three rock samples from core of DSDP Site 443, one sample from Site 445, and four samples at Site 446. All sites were drilled during DSDP Leg 58. At Site 443 (Shikoku Basin), about 116 meters of basalt basement was drilled. Three samples were chosen for dating from different levels in the basalt; two samples are aphyric basalt, and the other is subophitic dolerite. At Site 445 (Daito Ridge), no basement rock was drilled; however, conglomeratic sandstone was cored in the lower part of the hole. 40Ar-39Ar dating was applied to a basalt pebble in the conglomerate. At Site 446 (Daito Basin), the lower cored sequence is clay stone interlayered with 16 basalt sills. Four samples were chosen from sills at different levels.