999 resultados para 280399 Computer Software not elsewhere classified
Resumo:
A major impediment to developing real-time computer vision systems has been the computational power and level of skill required to process video streams in real-time. This has meant that many researchers have either analysed video streams off-line or used expensive dedicated hardware acceleration techniques. Recent software and hardware developments have greatly eased the development burden of realtime image analysis leading to the development of portable systems using cheap PC hardware and software exploiting the Multimedia Extension (MMX) instruction set of the Intel Pentium chip. This paper describes the implementation of a computationally efficient computer vision system for recognizing hand gestures using efficient coding and MMX-acceleration to achieve real-time performance on low cost hardware.
Resumo:
Security protocols preserve essential properties, such as confidentiality and authentication, of electronically transmitted data. However, such properties cannot be directly expressed or verified in contemporary formal methods. Via a detailed example, we describe the phases needed to formalise and verify the correctness of a security protocol in the state-oriented Z formalism.
Resumo:
Security protocols are often modelled at a high level of abstraction, potentially overlooking implementation-dependent vulnerabilities. Here we use the Z specification language's rich set of data structures to formally model potentially ambiguous messages that may be exploited in a 'type flaw' attack. We then show how to formally verify whether or not such an attack is actually possible in a particular protocol using Z's schema calculus.
Resumo:
In this paper we extend the conventional framework of program refinement down to the assembler level. We describe an extension to the Refinement Calculus that supports the refinement of programs in the Guarded Command Language to programs in .NET assembler. This is illustrated by a small example.
Resumo:
Previous work on formally modelling and analysing program compilation has shown the need for a simple and expressive semantics for assembler level programs. Assembler programs contain unstructured jumps and previous formalisms have modelled these by using continuations, or by embedding the program in an explicit emulator. We propose a simpler approach, which uses techniques from compiler theory in a formal setting. This approach is based on an interpretation of programs as collections of program paths, each of which has a weakest liberal precondition semantics. We then demonstrate, by example, how we can use this formalism to justify the compilation of block-structured high-level language programs into assembler.