1000 resultados para 15444-1
Resumo:
An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The synthesis, spectroscopy, and electrochemistry of the acyclic tertiary tetraamine copper(II) complex [CuL(1)](ClO4)(2) (L(1) = N,N-bis(2'-(dimethylamino)ethyl)-N,N'-dimethylpropane-1,3-diamine) is reported. The X-ray crystal structure of [CuL(1)(OClO3)(2)] reveals a tetragonally elongated CuN4O2 coordination sphere, exhibiting relatively long Cu-N bond lengths for a Cu-II tetraamine, and a small tetrahedral distortion of the CuN4 plane. The [CuL(1)](2+) ion displays a single, reversible, one-electron reduction at -0.06 V vs Ag/AgCl. The results presented herein illustrate the inherent difficulties associated with the separation and characterization of Cu-II complexes of tertiary tetraamines, and some previously incorrect assertions and unexplained observations of other workers are discussed.
Resumo:
Background. Clinical and pathologic examinations cannot always provide a prognosis for patients with medullary thyroid carcinoma. Membrane type 1 matrix metalloproteinase (MT1-MMP) can act directly on carcinogenesis and takes part in 1 of the processes of metalloproteinase 2 activation, an enzyme related to prognostic impairment of patients with such tumor. Methods. Thirty-five patients who were submitted to surgery were followed up for an average of 74 months, Postoperative and final medical conditions were characterized for comparison with MT1-MMP immunostainings, performed in surgical paraffin blocks. A value of p < .05 was considered statistically significant. Results. Proposed index (association of proportion and intensity of immunostaining) and proportion of immunostained cells in primary specimens were correlated with cure or persistence after initial operations (p = .0216 and p = .0098, respectively). Conclusion. MT1-MMP immunostaining in primary tumor specimens is a new and complementary prognostic predictor in patients with medullary thyroid carcinomas. (C) 2009 Wiley Periodicals, Inc. Head Neck 32: 58-67, 2010
Resumo:
Magneto-transport measurements of the 2D hole system (2DHS) in p-type Si-Si1-xGex heterostructures identify the integer quantum Hall effect (IQHE) at dominantly odd-integer filling factors v and two low-temperature insulating phases (IPs) at v = 1.5 and v less than or similar to 0.5, with re-entrance to the quantum Hall effect at v = 1. The temperature dependence, current-voltage characteristics, and tilted field and illumination responses of the IP at v = 1.5 indicate that the important physics is associated with an energy degeneracy of adjacent Landau levels of opposite spin, which provides a basis for consideration of an intrinsic, many-body origin.
Resumo:
Purlin-sheeting systems used for roofs and walls commonly take the form of cold-formed channel or zed section purlins, screw-connected to corrugated sheeting. These purlin-sheeting systems have been the subject of numerous theoretical and experimental investigations over the past three decades, but the complexity of the systems has led to great difficulty in developing a sound and general model. This paper presents a non-linear elasto-plastic finite element model, capable of predicting the behaviour of purlin-sheeting systems without the need for either experimental input or over simplifying assumptions. The model incorporates both the sheeting and the purlin, and is able to account for cross-sectional distortion of the purlin, the flexural and membrane restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The validity of the model is shown by its good correlation with experimental results. A simplified version of this model, which is more suitable for use in a design environment, is presented in a companion paper. (C) 1997 Elsevier Science Ltd.
Resumo:
Extraction of intracellular protein from Escherichia coli is traditionally achieved by mechanical disruption. A chemical treatment that destroys the integrity of the bacterial cell wall and could provide an alternative technique is examined in this study. Treatment with a combination of the chelating agent ethylenediaminetetraacetate (EDTA) (greater than 0.3 mM) and the chaotropic agent urea (6 M) is highly effective at releasing protein from uninduced E. coli. The 6 M urea in the presence of 3 mM EDTA can release cytoplasmic protein from both logarithmic-phase and stationary-phase E. coli cells at levels equivalent to mechanical disruption. The concentrations of the two chemical agents were the major variables affecting the maximum levels of protein release. Several minor variables and interactions were also identified. The kinetics of protein release is first order. For 2, 4, and 6 M urea with 3 mM EDTA, the time constant is approximately 2.5 min independent of urea concentration. Kinetics for 3 mM EDTA without urea is considerably slower, with a time constant of 12.3 min. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The chemokine stromal-derived factor-1 alpha (SDF-1 alpha) and its receptor CXCR4 are critically involved in directional migration and homing of plasma cells in multiple myeloma. Here, we show that the expression of SDF-1 alpha and CXCR4 was significantly down-regulated in patients treated with thalidomide (n = 10) as compared to newly diagnosed MM patients (n = 31) and MM patients treated with other drugs (n = 38). SDF-1 alpha and CXCR4 expression was also significantly decreased in a RPMI 8226 cell line treated with 10 and 20 mu mol/L of thalidomide. Our findings indicate that thalidomide therapy induces down-regulation of CXCR4 and its ligand SDF-1 alpha in multiple myeloma. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The olfactory nervous system is responsible for the detection of odors. Primary sensory olfactory neurons are located in a neuroepithelial sheet lining the nasal cavity. The axons from these neurons converge on to discrete loci or glomeruli in the olfactory bulb. Each glomerulus consists of the termination of thousands of primary axons on the dendrites of second-order olfactory neurons. What are the molecular mechanisms which guide growing olfactory axons to select sites in the olfactory bulb? We have shown that subpopulations of these axons differentially express cell surface carbohydrates and that these different subpopulations target and terminate in particular regions of the olfactory bulb. Interestingly, the olfactory neurons and glial components in the olfactory pathway between the nose and brain express galectin-1. By using in vitro assays of neurite outgrowth we found that both galectin-1 and it's ligands were capable of specifically stimulating neurite elongation. Examination of the olfactory system in galectin-1 null mutants revealed that a subpopulation of axons failed to navigate to their target site in the olfactory bulb. This is the first phenotypic effect observed in galectin-1 null mutants and indicates that galectin-1 has a role in the growth and/or guidance of a subpopulation of axons in the olfactory system during development.
Resumo:
The role of natural killer (NK) T cells in the development of lupus-like disease in mice is still controversial. We treated NZB/W mice with anti-NK1.1 monoclonal antibodies (mAbs) and our results revealed that administration of either an irrelevant immunoglobulin G2a (IgG2a) mAb or an IgG2a anti-NK1.1 mAb increased the production of anti-dsDNA antibodies in young NZB/W mice. However, the continuous administration of an anti-NK1.1 mAb protected aged NZB/W mice from glomerular injury, leading to prolonged survival and stabilization of the proteinuria. Conversely, the administration of the control IgG2a mAb led to an aggravation of the lupus-like disease. Augmented titres of anti-dsDNA in NZB/W mice, upon IgG2a administration, correlated with the production of BAFF/BLyS by dendritic, B and T cells. Treatment with an anti-NK1.1 mAb reduced the levels of interleukin-16, produced by T cells, in spleen cell culture supernatants from aged NZB/W. Adoptive transfer of NK T cells from aged to young NZB/W accelerated the production of anti-dsDNA in recipient NZB/W mice, suggesting that NK T cells from aged NZB/W are endowed with a B-cell helper activity. In vitro studies, using purified NK T cells from aged NZB/W, showed that these cells provided helper B-cell activity for the production of anti-dsDNA. We concluded that NK T cells are involved in the progression of lupus-like disease in mature NZB/W mice and that immunoglobulin of the IgG2a isotype has an enhancing effect on antibody synthesis due to the induction of BAFF/BLyS, and therefore have a deleterious effect in the NZB/W mouse physiology.
Resumo:
Context: Micro-RNA have emerged as an important class of short endogenous RNA that act as posttranscriptional regulators of gene expression and are constantly deregulated inhumancancer. MiR-1 has been found down-regulated in lung, colon, and prostate cancer. Objectives: In this study, we investigated the possible role of miR-1 in thyroid carcinogenesis. Design: We have analyzed miR-1 expression in a panel of thyroid neoplasias including benign and malignant lesions and searched for miR-1 targets. Results: Our results show that miR-1 expression is drastically down-regulated in thyroid adenomas and carcinomas in comparison with normal thyroid tissue. Interestingly, miR-1 down-regulation was also found in thyroid hyperproliferative nonneoplastic lesions such as goiters. We identified the CCND2, coding for the cyclin D2 (CCND2) protein that favors the G1/S transition, CXCR4, and SDF-1 alpha genes, coding for the receptor for the stromal cell derived factor-1 (SDF-1)/CXCL12 chemokine and its ligand SDF-1/CXCL12, respectively, as miR-1 targets. An inverse correlation was found between miR-1 expression and CXC chemokine receptor 4 (CXCR4) and SDF-1 alpha protein levels in papillary and anaplastic thyroid carcinomas. Consistent with a role of the CCND2 protein in cell proliferation and CXCR4 and SDF-1 alpha proteins in cell invasion and metastasis, functional studies demonstrate that miR-1 is able to inhibit thyroid carcinoma cell proliferation and migration. Conclusions: These results indicate the involvement of miR-1 in thyroid cell proliferation and migration, validating a role of miR-1 down-regulation in thyroid carcinogenesis. (J Clin Endocrinol Metab 96: E1388-E1398, 2011)
Resumo:
P>Human immunodeficiency virus (HIV)-1 protease is a known target of CD8+ T cell responses, but it is the only HIV-1 protein in which no fully characterized HIV-1 protease CD4 epitopes have been identified to date. We investigated the recognition of HIV-1 protease by CD4+ T cells from 75 HIV-1-infected, protease inhibitor (PI)-treated patients, using the 5,6-carboxyfluorescein diacetate succinimidyl ester-based proliferation assay. In order to identify putative promiscuous CD4+ T cell epitopes, we used the TEPITOPE algorithm to scan the sequence of the HXB2 HIV-1 protease. Protease regions 4-23, 45-64 and 73-95 were identified; 32 sequence variants of the mentioned regions, encoding frequent PI-induced mutations and polymorphisms, were also tested. On average, each peptide bound to five of 15 tested common human leucocyte antigen D-related (HLA-DR) molecules. More than 80% of the patients displayed CD4+ as well as CD8+ T cell recognition of at least one of the protease peptides. All 35 peptides were recognized. The response was not associated with particular HLA-DR or -DQ alleles. Our results thus indicate that protease is a frequent target of CD4+ along with CD8+ proliferative T cell responses by the majority of HIV-1-infected patients under PI therapy. The frequent finding of matching CD4+ and CD8+ T cell responses to the same peptides may indicate that CD4+ T cells provide cognate T cell help for the maintenance of long-living protease-specific functional CD8+ T cells.
Resumo:
Sepsis syndrome is caused by inappropriate immune activation due to bacteria and bacterial components released during infection. This syndrome is the leading cause of death in intensive care units. Specialized B-lymphocytes located in the peritoneal and pleural cavities are known as B-1 cells. These cells produce IgM and IL-10, both of which are potent regulators of cell-mediated immunity. It has been suggested that B-1 cells modulate the systemic inflammatory response in sepsis. In this study, we conducted in vitro and in vivo experiments in order to investigate a putative role of B-1 cells in a murine model of LPS-induced sepsis. Macrophages and B-1 cells were studied in monocultures and in co-cultures. The B-1 cells produced the anti-inflammatory cytokine IL-10 in response to LPS. In the B-1 cell-macrophage co-cultures, production of proinflammatory mediators (TNF-alpha, IL-6 and nitrite) was lower than in the macrophage monocultures, whereas that of IL-10 was higher in the co-cultures. Co-culture of B-1 IL-10(-/-) cells and macrophages did not reduce the production of the proinflammatory mediators (TNF-alpha, IL-6 and nitrite). After LPS injection, the mortality rate was higher among Balb/Xid mice, which are B-1 cell deficient, than among wild-type mice (65.0% vs. 0.0%). The Balb/Xid mice also presented a proinflammatory profile of TNF-alpha, IL-6 and nitrite, as well as lower levels of IL-10. In the early phase of LPS stimulation, B-1 cells modulate the macrophage inflammatory response, and the main molecular pathway of that modulation is based on IL-10-mediated intracellular signaling. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Inflammation is currently recognized as a key mechanism in the pathogenesis of renal ischemia-reperfusion (I/R) injury. The importance of infiltrating neutrophil, lymphocytes, and macrophage in this kind of injury has been assessed with conflicting results. Annexin 1 is a protein with potent neutrophil anti-migratory activity. In order to evaluate the effects of annexin A1 on renal I/R injury, uninephrectomized rats received annexin A1 mimetic peptide Ac2-26 (100 mu g) or vehicle before 30 min of renal artery clamping and were compared to sham surgery animals. Annexin A1 mimetic peptide granted a remarkable protection against I/R injury, preventing glomerular filtration rate and urinary osmolality decreases and acute tubular necrosis development. Annexin A1 infusion aborted neutrophil extravasation and attenuated macrophage infiltration but did not prevent tissue lymphocyte traffic. I/R increased annexin A1 expression (assessed by transmission electron microscopy) in renal epithelial cells, which was attenuated by exogenous annexin A1 infusion. Additionally, annexin A1 reduced I/R injury in isolated proximal tubules suspension. Annexin A1 protein afforded striking functional and structural protection against renal I/R. These results point to an important role of annexin A1 in the epithelial cells defense against I/R injury and indicate that neutrophils are key mediators for the development of tissue injury after renal I/R. If these results were confirmed in clinical studies, annexin A1 might emerge as an important tool to protect against I/R injury in renal transplantation and in vascular surgery.