971 resultados para 1-HEXYL-4-ETHYLOCTYL ISOPROPYLPHOSPHONIC ACID
Resumo:
It was found that cinnamic acid can react with potassium permanganate in the acidic medium and produce chemiluminescence, which was greatly enhanced by glyoxal. Under the optimum conditions, the linear range for the determination of cinnamic acid was 1.0×10-8 to 1.0×10-4 mol L-1 with a detection limit of 8.0×10-9 mol L-1, the relative standard deviation was 1.7% for 2.0×10-6 mol L-1 cinnamic acid solution in nine repeated measurements. This method was found to be novel0simple0fast and sensitive, it was successfully applied to the determination of cinnamic acid in human urine. Furthermore, the possible reaction mechanism was also discussed.
Resumo:
A L-ascorbic acid biosensor based on ascorbate oxidase has been developed. The enzyme was extracted from the mesocarp of cucumber (Cucumis sativus) by using 0.05 mol L-1 phosphate buffer, pH 5.8 containing 0.5 mol L-1 NaCl. After the dialysis versus phosphate buffer 0.05 mol L-1 pH 5.8, the enzyme was immobilized onto nylon net through glutaraldehyde covalent bond. The membrane was coupled to an O2 electrode and the yielding reaction monitored by oxygen depletion at -600 mV using flow injection analysis optimized to 0.1 mol L-1 phosphate buffer pH 5.8, as the carrier solution and flow-rate of 0.5 mL min-1. The ascorbic acid calibration curve was linear from 1.2x10-4 to 1.0x10-3 mol L-1. The evaluation of biosensor lifetime leads to 500 injections. Commercial pharmaceutical samples were analyzed with the proposed method and the results were compared with those obtained by high-performance liquid chromatography (HPLC).
Resumo:
Excessive oxidative stress in pancreatic β cells, caused by glucose and fatty acids, is associated with the pathogenesis of type 2 diabetes. Mogrosides have shown antioxidant and antidiabetic activities in animal models of diabetes, but the underlying mechanisms remain unclear. This study evaluated the antioxidant effect of mogrosides on insulinoma cells under oxidative stress caused by palmitic acid, and investigated the underlying molecular mechanisms. Mouse insulinoma NIT-1 cells were cultured in medium containing 0.75 mM palmitic acid, mimicking oxidative stress. The effects of 1 mM mogrosides were determined with the dichlorodihydrofluorescein diacetate assay for intracellular reactive oxygen species (ROS) and FITC-Annexin V/PI assay for cell apoptosis. Expression of glucose transporter-2 (GLUT2) and pyruvate kinase was determined by semi-quantitative reverse-transcription polymerase chain reaction. Palmitic acid significantly increased intracellular ROS concentration 2-fold (P<0.05), and decreased expression of GLUT2 (by 60%, P<0.05) and pyruvate kinase (by 80%, P<0.05) mRNAs in NIT-1 cells. Compared with palmitic acid, co-treatment with 1 mM mogrosides for 48 h significantly reduced intracellular ROS concentration and restored mRNA expression levels of GLUT2 and pyruvate kinase. However, mogrosides did not reverse palmitic acid-induced apoptosis in NIT-1 cells. Our results indicate that mogrosides might exert their antioxidant effect by reducing intracellular ROS and regulating expression of genes involved in glucose metabolism. Further research is needed to achieve a better understanding of the signaling pathway involved in the antioxidant effect of mogrosides.
Resumo:
The objective of this work is to investigate the production of fatty acid ethyl esters from soybean oil in compressed propane using a non-commercial lipase from Yarrowia lipolytica and two commercial ones as catalysts, Amano PS and Amano AY30. The experiments were performed in the temperature range of 35-65 °C. at 50 bar, enzyme concentration of 5 wt%, oil to ethanol molar ratio of 1:6 and 1:9, and solvent to substrates mass ratio of 2:1 and 4:1. The results indicated that low reaction conversions were generally obtained with the use of commercial and non-commercial lipases in pressurized propane medium. On the other hand, the aspects of low solvent to substrates mass ratio and mild temperature and pressure operating conditions used to produce ethyl esters justify further investigations to improve reaction yields.
Resumo:
In a fish paste made with cooked Brazilian flathead (Percophis brasiliensis), glycerol (17%), sodium chloride (1.5%) and potassium sorbate (0.1%) the following acid percentages: 0.2; 0.4; 0.6; 0.8, 1 and 1.5% w/w were incorporated to determine the relationship between added acetic acid and the sensorially perceived intensity, and the effects of the combination of sweet-acid tastes. Tests for paired comparison, ranking and structured verbal scales for sweet and acid attributes and psychophysical test were carried out. There was a perceptible difference among samples for differences of 0.4 units of acid concentration. Samples indicated as sweeter by 89.47% of the judges were those containing a lesser acid concentration. A reduction in glycerol sweetness when increasing acid levels was observed. Acetic acid reduced the sweetness of glycerol and inversely glycerol reduced the acidity of acetic acid. The data obtained with the magnitude estimation test agree with Steven's law.
Resumo:
This thesis investigated whole body glucose disposal and the adaptive changes in skeletal muscle carbohydrate metabolism following 28 d of supplementation with 1000 mg R(+)-lipoic acid in young sedentary males (age, 22.1 ± 0.67 yr, body mass, 78.7 ± 10.3 kg, n=9). In certain individuals, lipoic acid decreased the 180-min area under the glucose concentration and insulin concentration curve during an oral glucose tolerance test (OGTT) (n=4). In the same individuals, lipoic acid supplementation decreased pyruvate dehydrogenase kinase activity (PDK) (0.09 ± 0.024 min"^ vs. 0.137 ± 0.023 min'\ n=4). The fasting levels of the activated form of pyruvate dehydrogenase (PDHa) were decreased following lipoic acid (0.42 ± 0.13 mmol-min'kg'^ vs. 0.82 ± 0.32 mmolrnin'^kg"\ n=4), yet increased to a greater extent during the OGTT (1.21 ± 0.34 mmol-min'kg"' vs. 0.81 ±0.13 mmolmin"'kg'\ n=4) following hpoic acid supplementation. No changes were demonstrated in the remaining subjects (n=5). It was concluded that improved glucose clearance during an OGTT following lipoic acid supplementation is assisted by increased muscle glucose oxidation through increased PDHa activation and decreased PDK activity in certain individuals.
Resumo:
The hypothesis that rapid y-aminobutyric acid (GABA) accumulation is a plant defense against phytophagous insects was investigated. Simulation of mechanical damage resulting from phytophagous insect activity increased soybean (Glycine max L.) leaf GABA 10- to 25-fold within 1 to 4 min. Pulverizing leaf tissue resulted in a value of 2. 15 (±O. 11 SE) ~mol GABA per gram fresh weight. Increasing the GABA levels in a synthetic diet from 1.6 to 2.6 Jlffiol GABA per gram fresh weight reduced the growth rates, developmental rates, total biomass (50% reduction), and survival rates (30% reduction) of cultured Oblique banded leaf-roller (OBLR) (Choristonellra rosacealla Harris) larvae. In field experiments OBLR larvae were found predominantly on young terminal leaves which have a reduced capacity to produce GABA in response to mechanical damage. Glutamate decarboxylase (GAD) is a cytosolic enzyme which catalyses the decarboxylation of L-Glu to GABA. GAD is a calmodulin binding enzyme whose activity is stimulated dramatically by increased cytosolic H+ or Ca2 + ion concentrations. Phytophagous insect activity will disrupt the cellular compartmentation of H+ and Ca2 +, activate GAD and subsequent GABA accumulation. In animals GABA is a major inhibitory neurotransmitter. The possible mechanisms resulting in GABA inhibited growth and development of insects are discussed.
Resumo:
Les maladies cardiovasculaires (MCV) sont la principale cause de décès dans les pays occidentaux et constituent la principale complication associée au diabète. La lipoprotéine lipase (LPL) est une enzyme clé du métabolisme des lipides et est responsable de l'hydrolyse des lipoprotéines riches en triglycérides (TG). Plusieurs études ont démontré que la LPL sécrétée par les macrophages dans la paroi artérielle est pro-athérogénique. La dysfonction endothéliale caractérise les stades précoces du processus athérosclérotique. Il a été observé qu’un récepteur nouvellement identifié des lipoprotéines de basse densité oxydées (LDLox), le récepteur de type lectine des LDLox (LOX-1), est fortement exprimé dans les lésions athérosclérotiques humaines et dans l’aorte de rats diabétiques, suggérant un rôle clé de LOX-1 dans la pathogénèse de l’athérosclérose diabétique. Au vu du rôle potentiel de la LPL macrophagique et du LOX-1 dans l’athérosclérose associée au diabète de type 2, nous avons évalué la régulation de ces deux molécules pro-athérogéniques par des facteurs métaboliques et inflammatoires augmentés dans le diabète, soit la leptine, l’acide linoléique (LA) et la protéine C-réactive (CRP). Nos résultats démontrent que : 1) Dans les cellules endothéliales aortiques humaines (HAECs), LA augmente l’expression protéique de LOX-1 de façon temps- et dose-dépendante; 2) La pré-incubation de HAECs avec des antioxydants et des inhibiteurs de la NADPH oxydase, de la protéine kinase C (PKC) et du facteur nucléaire-kappa B (NF-kB), inhibe l’effet stimulant de LA sur l’expression protéique de LOX-1; 3) Dans les HAECs traitées avec LA, on observe une augmentation d’expression des isoformes classiques de la PKC; 4) LA augmente de manière significative l’expression génique de LOX-1 ainsi que la liaison des protéines nucléaires extraites des HAECs à la séquence régulatrice NF-kB présente dans le promoteur du gène de LOX-1; 5) LA augmente, via LOX-1, la captation des LDLox par les cellules endothéliales. Pris dans leur ensemble, ces résultats démontrent que LA augmente l’expression endothéliale de LOX-1 in vitro et appuient le rôle clé de LA dans la dysfonction endothéliale associée au diabète. Au vu de nos études antérieures démontrant qu’une expression accrue de LPL macrophagique chez les patients diabétiques de type 2 et que l’augmentation de facteurs métaboliques dans cette maladie, soit l’homocystéine (Hcys), les acides gras et les produits terminaux de glycation (AGE), accroissent l’expression de la LPL macrophagique, nous avons par la suite déterminé l’effet, in vitro, de deux autres facteurs métaboliques et inflammatoires surexprimés dans le diabète, soit la leptine et la CRP, sur l’expression de la LPL macrophagique. Les concentrations plasmatiques de leptine sont élevées chez les patients diabétiques et sont associées à un accroissement des risques cardiovasculaires. Nous avons démontré que : 1) Dans les macrophages humains, la leptine augmente l’expression de la LPL, tant au niveau génique que protéique; 2) L’effet stimulant de la leptine sur la LPL est aboli par la pré-incubation avec un anticorps dirigé contre les récepteurs à la leptine (Ob-R), des inhibiteurs de la PKC et des antioxydants; 3) La leptine augmente l’expression membranaire des isoformes classiques de la PKC et la diminution de l’expression endogène de la PKC, abolit l’effet de la leptine sur l’expression de la LPL macrophagique; 4) Dans les macrophages murins, la leptine augmente le taux de synthèse de la LPL et augmente la liaison de protéines nucléaires à la séquence protéine activée-1 (AP-1) du promoteur du gène de la LPL. Ces observations supportent la possibilité que la leptine puisse représenter un facteur stimulant de la LPL macrophagique dans le diabète. Finalement, nous avons déterminé, in vitro, l’effet de la CRP sur l’expression de la LPL macrophagique. La CRP est une molécule inflammatoire et un puissant prédicteur d’événements cardiovasculaires. Des concentrations élevées de CRP sérique sont documentées chez les patients diabétiques de type 2. Nous avons démontré que : 1) Dans les macrophages humains, la CRP augmente l’expression de la LPL au niveau génique et protéique et la liaison de la CRP aux récepteurs CD32 est nécessaire pour médier ses effets; 2) La pré-incubation de macrophages humains avec des antioxydants, des inhibiteurs de la PKC et de la protéine kinase mitogénique activée (MAPK), prévient l’induction de la LPL par la CRP; 3) La CRP augmente l’activité de la LPL, la génération intracellulaire d’espèces radicalaires oxygénées (ROS), l’expression d’isoformes classiques de la PKC et la phosphorylation des kinases extracellulaires régulées 1/2 (ERK 1/2); 4) Les macrophages murins traités avec la CRP démontrent une augmentation de la liaison des protéines nucléaires à la séquence AP-1 du promoteur du gène de la LPL. Ces données suggèrent que la LPL puisse représenter un nouveau facteur médiant les effets délétères de la CRP dans la vasculopathie diabétique. Dans l’ensemble nos études démontrent le rôle clé de facteurs métaboliques et inflammatoires dans la régulation vasculaire de la LPL et du LOX-1 dans le diabète. Nos données suggèrent que la LPL et le LOX-1 puissent représenter des contributeurs clé de l’athérogénèse accélérée associée au diabète chez l’humain. Mots-clés : athérosclérose, maladies cardiovasculaires, diabète de type 2, macrophage, LPL, cellules endothéliales, LOX-1, stress oxydatif, leptine, LA, CRP.
Resumo:
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soilamendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1, 1, 10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05,0.25,0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (similar to soluble fraction), extraction with 1 M NH4OAc at pH 7 (similar to exchangeable fraction), and extraction with 0.5 M NH4OAc + 0.5 M HOAc + 0.02 M EDTA atpH 4.65 (similar to potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annutis will be presented.
Resumo:
The effects of maize and soya bean residues on the pH and charge of a loamy sand (Kawalazi) and a sandy clay loam (Naming'omba) from Malawi were measured to determine both the indirect effect of the residues on soil charge through the changes in pH, and the direct contribution of charge carried on the residue surfaces. The soils had pH values (10 mM CaCl2) of 4.3 and 5.0 and organic matter contents were 1.4% and 2.7%, respectively. The clay fractions were dominated by kaolinite and goethite, and mica was present in both samples. The soils were incubated for 28 days with maize (Zea mays) and soya bean (Glycine max) residues. The maximum addition of residue (12.0%) in the Kawalazi and Naming'omba soils increased the pH from 4.3 and 5.0 to 4.8 and 5.3 (maize) and to 9.0 and 8.8 (soya bean), respectively. Negative charge increased from 2.1 and 4.7 cmol(c) kg(-1) to 3.8 and 7.5 (maize) and to 5.3 and 9.3 cmol(c) kg(-1) (soya bean). Positive charge increased from 0.72 and 0.62 to 0.87 and 0.85 cmol(c) kg(-1) (maize) and to 0.75 and 0.68 (soya bean). The charge contribution by the residues was calculated by difference between the charge on a sample incubated with residue and the charge on a soil without residue limed to the same pH value. Up to 100 cmolc negative charge and 10 cmol(c) of positive charge per kg of residue were directly contributed to the soil-residue mixture, the amounts depending on the type of residue, the extent to which the residue was decomposed in the soil and the pH of the mixture. The Anderson and Sposito method [Soil Sci. Soc. Am. J. 55 (1991) 1569] was used to partition the permanent negative charge (holding Cs+) from variable negative charge (holding Li+). In the pH range 3.7-6.5 the maize residue contributed between 3 and 26 cmol(c) of variable charge per kg of residue in the Kawalazi soil and between 6 and 25 cmol(c) per kg of residue in the Naming'omba soil. For soya bean the values were between I and 28 and between 4 and 68 cmolc per kg of residue, respectively. At a given pH value, the charge tended to increase with time of incubation and for a given addition of residue, pH decreased during incubation. Addition of residues contributed no permanent negative charge and the charge on the soil measured by Cs adsorption was independent of pH change caused by the residue showing that the method is valid for soil-residue mixtures. With time there was a decrease in the amount of permanent charge probably due to masking as humic material become adsorbed on mineral surfaces. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The potential to increase the concentrations of n-3 polyunsaturated fatty acids (PUFAs) in milk fat was investigated by studying the effects of feeding a xylose-treated, whole cracked linseed supplement ( rich in alpha-linolenic acid) to dairy cows. Also the effect of increasing the dietary intake of vitamin E on the vitamin E status of milk was investigated. The effect of pasteurisation on milk fatty acid composition was also examined. Using a 3 x 2 factorial design, a total of 60 Holstein dairy cows were fed a total mixed ration based on grass silage supplemented with one of three levels of whole cracked linseed (78, 142 or 209 g . kg(-1) diet dry matter (DM); designated LL, ML or HL, respectively) in combination with one of two levels of additional dietary vitamin E intake ( 6 or 12 g vitamin E . animal(-1) . day(-1); designated LE or HE, respectively). Increasing lipid supplementation reduced (P < 0.01) diet DM intake and milk yield, and increased (P < 0.001) the overall content of oleic, vaccenic, alpha-linolenic and conjugated linoleic acids, and total PUFAs and monounsaturated fatty acids (MUFA). Myristic and palmitic acids in milk fat were reduced ( P < 0.001) through increased lipid supplementation. While α-linolenic acid concentrations were substantially increased this acid only accounted for 0.02 of total fatty acids in milk at the highest level of supplementation (630 g α-linolenic acid &BULL; animal(-1) &BULL; day(-1) for HL). Conjugated linoleic acid concentrations in milk fat were almost doubled by increasing the level of lipid supplementation (8.9, 10.4 and 16.1 g &BULL; kg(-1) fatty acids for LL, ML and HL, respectively). Although milk vitamin E contents were generally increased there was no benefit (P > 0.05) of increasing vitamin E intake from 6 to 12 g . animal(-1) . day(-1). The fatty acid composition of milk was generally not affected by pasteurisation.
Resumo:
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.
Resumo:
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.
Resumo:
The photodimerisation of single crystals of substituted cinnamic acid has been monitored continuously by infrared microscopy using a synchrotron source. The beta-form of 2,4-dichloro-trans-cinnamic acid dimerises under ultraviolet irradiation to form the corresponding beta-truxinic acid derivative in a reaction which follows strictly first order kinetics. By contrast the corresponding reactions in single crystals of beta-2-chloro-trans-cinnamic acid and beta-4-chloro-trans-cinnamic acid deviate somewhat from first order kinetics as a result of solid-state effects. In all three cases the reactions proceed smoothly from monomer to dimer with no hint of any reaction intermediate.