954 resultados para 1, d18O-tied age mod


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Paleoenvironmental studies and climate models demonstrate that fluvial runoff and moisture availability in the Caribbean hinterland react very sensitively to climatic variations. Late Pleistocene and Holocene climate records document pronounced dry and wet periods over tropical South America mainly caused by shifts of the Intertropical Convergence Zone (ITCZ). However, forcing mechanisms for changes in the ITCZ position remain controversial. Here we present high-resolution foraminiferal Ba/Ca and d18Oseawater records from a core located within the Orinoco River outflow documenting abrupt hydrological changes in the Orinoco catchment area during the deglacial and Holocene. Our data, obtained from the surface-dwelling foraminifera Globigerinoides ruber (pink), show an abrupt increase in Ba/Ca ratios in the early Holocene, starting ~600 yr after the end of the Younger Dryas (YD) cold interval at ca. 10.8 ka and suggesting a massive reorganization of moisture sources in northern South America. In contrast, the salinity dependent d18Oseawater from the same samples shows a gradual decrease starting at the end of the YD. The offset of our Ba/Ca peak excludes meltwater release in conjunction with the northern Andean glacier retreat well before the end of the YD as a forcing mechanism. We suggest that the Ba/Ca record documents an abrupt increase in Ba-rich waters of a northern Andean source caused by the insolation-driven shift of the ITCZ and/or enhanced monsoon activity.

Relevância:

50.00% 50.00%

Publicador:

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Detailed deglacial and Holocene records of planktonic d18O and Mg/Ca-based sea surface temperature (SST) from the Okinawa Trough suggest that at ~18 to 17 thousand years before present (kyr B.P.), late spring/early summer SSTs were approximately 3°C cooler than today, while surface waters were up to 1 practical salinity unit saltier. These conditions are consistent with a weaker influence of the summer East Asian Monsoon (EAM) than today. The timing of suborbital SST oscillations suggests a close link with abrupt changes in the EAM and North Atlantic climate. A tropical influence, however, may have resulted in subtle decoupling between the North Atlantic and the Okinawa Trough/EAM during the deglaciation. Okinawa Trough surface water trends in the Holocene are consistent with model simulations of an inland shift of intense EAM precipitation during the middle Holocene. Millennial-scale alternations between relatively warm, salty conditions and relatively cold, fresh conditions suggest varying influence of the Kuroshio during the Holocene.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Interpretations of calcite strontium/calcium records in terms of ocean history and calcite diagenesis require distinguishing the effects on deep-sea calcite sediments of changes in ocean chemistry, of different mixes of calcite-depositing organisms as sediment contributors through time and space, and of the loss of Sr during diagenetic calcite recrystallization. In this paper Sr/Ca and d18O values of bulk calcium carbonate sediments are used to estimate the relative extent of calcite recrystallization in samples from four time points (core tops, 5.6, 9.4, and 37.1 Ma) at eight Ocean Drilling Program sites in the equatorial Atlantic (Ceara Rise) and equatorial Pacific (Ontong Java Plateau and two eastern equatorial Pacific sites). The possibility that site-to-site differences in calcite Sr/Ca at a given time point originated from temporal variations in ocean chemistry was eliminated by careful age control of samples for each time point, with sample ages differing by less than the oceanic residence times of Sr and Ca. The Sr/Ca and d18O values of 5.6- and 9.4-Ma samples from the less-carbonate-rich eastern equatorial Pacific sites and Ceara Rise Site 929 appear to be less diagenetically altered than the Sr/Ca and d18O values of contemporaneous samples from the more carbonate-rich sites. It is evident from these data that both Sr/Ca and d18O in bulk calcite have been diagenetically altered in some samples 5.6 Ma and older. These data indicate that noncarbonate sedimentary components, like clay and biogenic silica, have partially suppressed recrystallization at the lower carbonate sites. Sr/Ca data from the less altered, carbonate-poor sites indicate higher oceanic Sr/Ca relative to today at 5.6 and 9.4 Ma.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Variations in Mg/Ca-based sea surface temperature and oxygen isotope ratio (d18O) of the surface water in the northern East China Sea (ECS) were reconstructed with high resolution during the last 18 kyr using planktic foraminifera. Millennial-scale variations between warmer, more saline surface water and cooler, less saline surface water were recognized during the early deglacial period and the Holocene, suggesting changes in the mixing ratio between the Kuroshio Water and the Changjiang Diluted Water. Stronger East Asian summer monsoon (EASM) precipitation events in south China are identified at 10.5, 8.8, 7.0, 5.3, 4.7, 2.9, 1.7, and 0.5 ka, based on sea surface salinity (SSS) records of the northern ECS. Weaker EASM precipitation events are also detected at 9.3, 8.3, 7.3, 6.0, 3.3, 2.3, 0.7, and 0.4 ka during the Holocene. These events agree with the maxima in d18O records of stalagmites from various parts of the Changjiang (Yangtze) River drainage. This agreement supports that our SSS record properly captures the millennial-scale dry (less EASM precipitation) events over the drainage basin of the Changjiang River during the Holocene. These dry events are also in good agreement with North Atlantic ice-rafted events, suggesting a teleconnection between North Atlantic climate and the EASM during the Holocene.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Variations in the Indian summer monsoon (ISM) intensity during the last 16.7?ka have been studied using organic carbon (Corg), d15N of sedimentary organic matter, CaCO3, sediment texture, d18OC, and Mg/Ca-derived sea surface temperature, d18O of sea water and sea surface salinity, in a 14C-dated sediment core from the eastern Arabian Sea. The d18O in water and planktonic foraminifera shells off the central west coast of India may be controlled by the ISM intensity as this area receives high precipitation and land runoff. Also, the Corg and CaCO3 contents of sediments and d15N of sedimentary organic matter may be linked to ISM-induced productivity and denitrification. The results of the present study reveal that between 16 and 15.2 ka BP, the ISM was weak with minor fluctuations and started intensifying around 15.2 ka BP, at the onset of the Bølling-Ållerød (B-A) event. The B-A event is characterized by higher water column denitrification rates comparable to the present day. The ISM signatures observed in the d18OC record of B-A event compare well with those from Timta cave of the western Himalayas and also the Asian summer monsoon signatures from the Hulu caves in China and warming signatures in Greenland Ice Sheet Project 2 (GISP2) suggesting atmospheric teleconnections through Intertropical Convergence Zone. The boundary between the Younger Dryas and the Holocene is discernible with small episodes of abrupt events of increased ISM intensity. This decrease in d18OC values at ~11.8 ka BP is contemporary with June solar insolation maximum at 30° north and the increase in methane in the GISP2 ice core supporting episodes of warmer climate and increase in ISM intensity. The ISM seems to have been most stable between 7 and 5.6 ka BP. The core exhibits periodicity of 500 years that is comparable to the Atlantic water formation and the Chinese monsoon.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Sediments from the Black Sea, a region historically dominated by forests and steppe landscapes, are a valuable source of detailed information on the changes in regional terrestrial and aquatic environments at decadal to millennial scales. Here we present multi-proxy environmental records (pollen, dinoflagellate cysts, Ca, Ti and oxygen isotope data) from the uppermost 305 cm of the core 22-GC3 (42°13.53' N, 36°29.55' E) collected from a water depth of 838 m in the southern part of the Black Sea in 2007. The records span the last ~ 18 kyr (all ages are given in cal kyr BP). The pollen data reveal the dominance of the Artemisia-steppe in the region, suggesting rather dry/cold environments ~ 18-14.5 kyr BP. Warming/humidity increase during melt-water pulses (~ 16.1-14.5 kyr BP), indicated by d18O records from the 22-GC3 core sediment and from the Sofular Cave stalagmite, is expressed in more negative d13C values from the Sofular Cave, usually interpreted as the spreading of C3 plants. The records representing the interstadial complex (~ 14.5-12.9 kyr BP) show an increase in temperature and moisture, indicated by forest development, increased primary productivity and reduced surface run-off, whereas the switch from primary terrigenous to primary authigenic Ca origin occurs ~ 500 yr later. The Younger Dryas cooling is clearly demonstrated by more negative d13C values from the Sofular Cave and a reduction of pines. The early Holocene (11.7-8.5 kyr BP) interval reveals relatively dry conditions compared to the mostly moist and warm middle Holocene (8.5-5 kyr BP), which is characterized by the establishment of the species-rich warm mixed and temperate deciduous forests in the low elevation belt, temperate deciduous beech-hornbeam forests in the middle and cool conifer forest in upper mountain belt. The border between the early and middle Holocene in the vegetation records coincides with the opening of the Mediterranean corridor at ~ 8.3 kyr BP, as indicated by a marked change in the dinocyst assemblages and in the sediment lithology. Changes in the pollen assemblages indicate a reduction in forest cover after ~ 5 kyr BP, which was likely caused by increased anthropogenic pressure on the regional vegetation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dinocysts from cores collected in the Chukchi Sea from the shelf edge to the lower slope were used to reconstruct changes in sea surface conditions and sea ice cover using modern analogue techniques. Holocene sequences have been recovered in a down-slope core (B15: 2135 m, 75°44'N, sedimentation rate of ~1 cm/kyr) and in a shelf core (P1: 201 m, 73°41'N, sedimentation rate of ~22 cm/kyr). The shelf record spanning about 8000 years suggests high-frequency centennial oscillations of sea surface conditions and a significant reduction of the sea ice at circa 6000 and 2500 calendar (cal) years B.P. The condensed offshore record (B15) reveals an early postglacial optimum with minimum sea ice cover prior to 12,000 cal years B.P., which corresponds to a terrestrial climate optimum in Bering Sea area. Dinocyst data indicate extensive sea ice cover (>10 months/yr) from 12,000 to 6000 cal years B.P. followed by a general trend of decreasing sea ice and increasing sea surface salinity conditions, superimposed on large-amplitude millennial-scale oscillations. In contrast, d18O data in mesopelagic foraminifers (Neogloboquadrina pachyderma) and benthic foraminifers (Cibicides wuellerstorfi) reveal maximum subsurface temperature and thus maximum inflow of the North Atlantic water around 8000 cal years B.P., followed by a trend toward cooling of the subsurface to bottom water masses. Sea-surface to subsurface conditions estimated from dinocysts and d18O data in foraminifers thus suggest a decoupling between the surface water layer and the intermediate North Atlantic water mass with the existence of a sharp halocline and a reverse thermocline, especially before 6000 years B.P. The overall data and sea ice reconstructions from core B15 are consistent with strong sea ice convergence in the western Arctic during the early Holocene as suggested on the basis of climate model experiments including sea ice dynamics, matching a higher inflow rate of North Atlantic Water.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Western subtropical North Atlantic oceanic and atmospheric circulations connect tropical and subpolar climates. Variations in these circulations can generate regional climate anomalies that are not reflected in Northern Hemisphere averages. Assessing the significance of anthropogenic climate change at regional scales requires proxy records that allow recent trends to be interpreted in the context of long-term regional variability. We present reconstructions of Gulf Stream sea surface temperature (SST) and hydrographic variability during the past two millennia based on the magnesium/calcium ratio and oxygen isotopic composition of planktic foraminifera preserved in two western subtropical North Atlantic sediment cores. Reconstructed SST suggests low-frequency variability of ~1°C during an interval that includes the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). A warm interval near 1250 A.D. is distinct from regional and hemispheric temperature, possibly reflecting regional variations in ocean-atmosphere heat flux associated with changes in atmospheric circulation (e.g., the North Atlantic Oscillation) or the Atlantic Meridional Overturning Circulation. Seawater d18O, which is marked by a fresher MCA and a more saline LIA, covaries with meridional migrations of the Atlantic Intertropical Convergence Zone. The northward advection of tropical salinity anomalies by mean surface currents provides a plausible mechanism linking Carolina Slope and tropical Atlantic hydrology.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ~11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), d18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no d18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ~4 km water depth.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The sea surface temperature (SST) of the tropical Indian Ocean is a major component of global climate teleconnections. While the Holocene SST history is documented for regions affected by the Indian and Arabian monsoons, data from the near-equatorial western Indian Ocean are sparse. Reconstructing past zonal and meridional SST gradients requires additional information on past temperatures from the western boundary current region. We present a unique record of Holocene SST and thermocline depth variations in the tropical western Indian Ocean as documented in foraminiferal Mg/Ca ratios and d18O from a sediment core off northern Tanzania. For Mg/Ca and thermocline d18O, most variance is concentrated in the centennial to bicentennial periodicity band. On the millennial time scale, an early to mid-Holocene (~7.8-5.6 ka) warm phase is followed by a temperature drop by up to 2°C, leading to a mid-Holocene cool interval (5.6-4.2 ka). The shift is accompanied by an initial reduction in the difference between surface and thermocline foraminiferal d18O, consistent with the thickening of the mixed layer and suggestions of a strengthened Walker circulation. However, we cannot confirm the expected enhanced zonal SST gradient, as the cooling of similar magnitude had previously been found in SSTs from the upwelling region off Sumatra and in Flores air temperatures. The SST pattern probably reflects the tropical Indian Ocean expression of a large-scale climate anomaly rather than a positive Indian Ocean Dipole-like mean state.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The marine isotopic stage 3 (MIS3) at Ocean Drilling Program (ODP) Site 1060 (Gulf Stream) shows both sharp onset and end of interstadials, the existence of very short lived warm events during stadials, and points to differences in detail between the sea surface temperature (SST) record from the western North Atlantic and the atmospheric temperature record inferred from d18O in Greenland ice. Investigating MIS3 and obtaining comparable data from other locations appears crucial. The eastern Atlantic provides well-documented records of climate changes. We have selected a core from off Portugal and use it to examine Dansgaard/Oeschger events (D/O) at centennial-scale resolution (139 years on average between two data points). We have obtained a faunal data set for core MD01-2444, 37°N, 10°W, 2600 m water depth and use a group of species (Globigerina bulloides + Globigerinita glutinata) as a proxy of upwelling intensity driven by trade winds intensity changes. We tentatively relate the variation of this group to a North Atlantic Oscillation-like phenomenon (NAO) off Portugal. We observe that it resembles the rainfall index in the Caribbean as recorded at ODP Site 1002 (Cariaco Basin) which traces the Intertropical Convergence Zone (ITCZ) location through changes of terrigenous inputs. The driest intervals (ITZC to the south) at Site 1002 correspond to intervals of increased upwelling in MD01-2444 as well as the driest periods identified during stadials on similar cores in the area. Because the ITZC to the south is consistent with an El Niño-Southern Oscillation (ENSO+) situation, our study suggests a positive correlation between ENSO-like conditions and NAO-like conditions at a millennial timescale. During interstadial intervals when increased wetness over Cariaco is recorded (ITCZ to the north) and the upwelling in MD01-2444 is decreased, we see from both SSTs and faunal tropical indicators that MD01-2444 site is warm. In addition, interstadials are equally warm through each so-called Bond cycle. This contrasts with the Greenland Ice Core Project (GRIP) record where interstadial peaks are successively cooler through each Bond cycle. This record confirms a link between tropical climate linked to ITCZ position and the climate of southern Europe at millennial timescales, in spite of showing a very good correlation with polar latitudes (GRIP) through d18O on Globigerina bulloides. In addition, because the warmest SSTs and the d18O on G. bulloides are so remarkably different, our work points to changes in seasonality as a strong control over the climatic pattern of the North Atlantic area and the marked influence of winter conditions.