974 resultados para wind generation
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Based on the presentation and discussion at the 3rd Winter School on Technology Assessment, December 2012, Universidade Nova de Lisboa (Portugal), Caparica Campus, PhD programme on Technology Assessment
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
One of today's biggest concerns is the increase of energetic needs, especially in the developed countries. Among various clean energies, wind energy is one of the technologies that assume greater importance on the sustainable development of humanity. Despite wind turbines had been developed and studied over the years, there are phenomena that haven't been yet fully understood. This work studies the soil-structure interaction that occurs on a wind turbine's foundation composed by a group of piles that is under dynamic loads caused by wind. This problem assumes special importance when the foundation is implemented on locations where safety criteria are very demanding, like the case of a foundation mounted on a dike. To the phenomenon of interaction between two piles and the soil between them it's given the name of pile-soil-pile interaction. It is known that such behavior is frequency dependent, and therefore, on this work evaluation of relevant frequencies for the intended analysis is held. During the development of this thesis, two methods were selected in order to assess pile-soil-pile interaction, being one of analytical nature and the other of numerical origin. The analytical solution was recently developed and its called Generalized pile-soil-pile theory, while for the numerical method the commercial nite element software PLAXIS 3D was used. A study of applicability of the numerical method is also done comparing the given solution by the nite element methods with a rigorous solution widely accepted by the majority of the authors.
Resumo:
Wind turbines and solar panels are becoming second nature in Portugal, as its occurrence in the country becomes ubiquitous. Somehow, one could argue that renewable energy in Portugal is in the process of ‘naturalisation’ as part of a new – mechanised, but environmentally benign – landscape. Portuguese Institute for the Conservation of Nature and Biodiversity (ICNB) has shown an ambiguous stance on this issue, defending global concerns towards renewable energy, while at the same time attempting to engage locals in the preservation of extensive ‘classified areas’. In the course of this research, we tried to focus on these incongruities and to analyse how they are impacting local communities during the process of wind power installation.
Resumo:
The assessment of wind energy resource for the development of deep offshore wind plants requires the use of every possible source of data and, in many cases, includes data gathered at meteorological stations installed at islands, islets or even oil platforms—all structures that interfere with, and change, the flow characteristics. This work aims to contribute to the evaluation of such changes in the flow by developing a correction methodology and applying it to the case of Berlenga island, Portugal. The study is performed using computational fluid dynamic simulations (CFD) validated by wind tunnel tests. In order to simulate the incoming offshore flow with CFD models a wind profile, unknown a priori, was established using observations from two coastal wind stations and a power law wind profile was fitted to the existing data (a=0.165). The results show that the resulting horizontal wind speed at 80 m above sea level is 16% lower than the wind speed at 80 m above the island for the dominant wind direction sector.
Resumo:
This paper analyses the boundaries of simplified wind turbine models used to represent the behavior of wind turbines in order to conduct power system stability studies. Based on experimental measurements, the response of recent simplified (also known as generic) wind turbine models that are currently being developed by the International Standard IEC 61400-27 is compared to complex detailed models elaborated by wind turbine manufacturers. This International Standard, whose Technical Committee was convened in October 2009, is focused on defining generic simulation models for both wind turbines (Part 1) and wind farms (Part 2). The results of this work provide an improved understanding of the usability of generic models for conducting power system simulations.
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
Throughout recent years, there has been an increase in the population size, as well as a fast economic growth, which has led to an increase of the energy demand that comes mainly from fossil fuels. In order to reduce the ecological footprint, governments have implemented sustainable measures and it is expected that by 2035 the energy produced from renewable energy sources, such as wind and solar would be responsible for one-third of the energy produced globally. However, since the energy produced from renewable sources is governed by the availability of the respective primary energy source there is often a mismatch between production and demand, which could be solved by adding flexibility on the demand side through demand response (DR). DR programs influence the end-user electricity usage by changing its cost along the time. Under this scenario the user needs to estimate the energy demand and on-site production in advance to plan its energy demand according to the energy price. This work focuses on the development of an agent-based electrical simulator, capable of: (a) estimating the energy demand and on-site generation with a 1-min time resolution for a 24-h period, (b) calculating the energy price for a given scenario, (c) making suggestions on how to maximize the usage of renewable energy produced on-site and to lower the electricity costs by rescheduling the use of certain appliances. The results show that this simulator allows reducing the energy bill by 11% and almost doubling the use of renewable energy produced on-site.
Resumo:
Notch is a conserved signalling pathway, which plays a crucial role in a multiple cellular processes such as stem cell self-renewal, cell division, proliferation and apoptosis. In mammalian, four Notch receptors and five ligands are described, where interaction is achieved through their extracellular domains, leading to a transcription activation of different target genes. Increased expression of Notch ligands has been detected in several types of cancer, including breast cancer suggesting that these proteins represent possible therapeutic targets. The goal of this work was to generate quality protein targets and, by phage display technology, select function-blocking antibodies specific for Notch ligands. Phage display is a powerful technique that allows the generation of highly specific antibodies to be used for therapeutics, and it has also proved to be a reliable approach in identifying and validating new cancer-related targets. Also, we aimed at solving the tri-dimensional structure of the Notch ligands alone and in complex with selected antibodies. In this work, the initial phase focused on the optimization of the expression and purification of a human Delta-like 1 ligand mutant construct (hDLL1-DE3), by refolding from E. coli inclusion bodies. To confirm the biological activity of the produced recombinant protein cellular functional studies were performed, revealing that treatment with hDLL1-DE3 protein led to a modulation of Notch target genes. In a second stage of this study, Antibody fragments (Fabs) specific for hDLL1-DE3 were generated by phage display, using the produced protein as target, in which one good Fab candidate was selected to determine the best expression conditions. In parallel, multiple crystallization conditions were tested with hDLL1-DE3, but so far none led to positive results.
Resumo:
This thesis does not set out to focus on the dynamics relationship between Twitter and stock prices, but instead tries to understand if using relevant information extracted from tweets has the power to increase investors’ stock picking ability, and generate alpha in portfolio’s choice relative to a benchmark. Despite the short period analyzed, it gives promising results that the sentiment analysis performed by Social Market Analytics Inc. applied to an equity portfolio, is able to generate positive abnormal returns, statistically significant in and out of sample.
Resumo:
Taking into account the fact that the sun’s radiation is estimated to be enough to cover 10.000 times the world’s total energy needs (BRAKMANN & ARINGHOFF, 2003), it is difficult to understand how solar photovoltaic systems (PV) are still such a small part of the energy source matrix across the globe. Though there is an ongoing debate as to whether energy consumption leads to economic growth or whether it is the other way around, the two variables appear correlated and it is clear that ensuring the availability of energy to match a country’s growth targets is one of the prime concerns for any government. The topic of centralized vs distributed electricity generation is also approached, especially in what regards the latter fit to developing countries needs, namely the lack of investment capabilities and infrastructure, scattered population, and other factors. Finally, Brazil’s case is reviewed, showing that the current cost of electricity from the grid versus the cost from PV solutions still places an investment of this nature with 9 to 16 years to reach breakeven (from a 25 year panel lifespan), which is too high compared to the required 4 years for most Brazilians. Still, recently passed legislation opened the door, even if unknowingly, to the development of co-owned solar farms, which could reduce the implementation costs by as much as 20% and hence reduce the number of years to breakeven by 3 years.
Resumo:
Doctoral Program in Computer Science
Resumo:
ETL conceptual modeling is a very important activity in any data warehousing system project implementation. Owning a high-level system representation allowing for a clear identification of the main parts of a data warehousing system is clearly a great advantage, especially in early stages of design and development. However, the effort to model conceptually an ETL system rarely is properly rewarded. Translating ETL conceptual models directly into something that saves work and time on the concrete implementation of the system process it would be, in fact, a great help. In this paper we present and discuss a hybrid approach to this problem, combining the simplicity of interpretation and power of expression of BPMN on ETL systems conceptualization with the use of ETL patterns to produce automatically an ETL skeleton, a first prototype system, which has the ability to be executed in a commercial ETL tool like Kettle.