991 resultados para visible image sensor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays there is an increase of location-aware mobile applications. However, these applications only retrieve location with a mobile device's GPS chip. This means that in indoor or in more dense environments these applications don't work properly. To provide location information everywhere a pedestrian Inertial Navigation System (INS) is typically used, but these systems can have a large estimation error since, in order to turn the system wearable, they use low-cost and low-power sensors. In this work a pedestrian INS is proposed, where force sensors were included to combine with the accelerometer data in order to have a better detection of the stance phase of the human gait cycle, which leads to improvements in location estimation. Besides sensor fusion an information fusion architecture is proposed, based on the information from GPS and several inertial units placed on the pedestrian body, that will be used to learn the pedestrian gait behavior to correct, in real-time, the inertial sensors errors, thus improving location estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Mecânica – Gestão Industrial

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral imaging sensors provide image data containing both spectral and spatial information from the Earth surface. The huge data volumes produced by these sensors put stringent requirements on communications, storage, and processing. This paper presents a method, termed hyperspectral signal subspace identification by minimum error (HySime), that infer the signal subspace and determines its dimensionality without any prior knowledge. The identification of this subspace enables a correct dimensionality reduction yielding gains in algorithm performance and complexity and in data storage. HySime method is unsupervised and fully-automatic, i.e., it does not depend on any tuning parameters. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given an hyperspectral image, the determination of the number of endmembers and the subspace where they live without any prior knowledge is crucial to the success of hyperspectral image analysis. This paper introduces a new minimum mean squared error based approach to infer the signal subspace in hyperspectral imagery. The method, termed hyperspectral signal identification by minimum error (HySime), is eigendecomposition based and it does not depend on any tuning parameters. It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new toolbox for hyperspectral imagery, developed under the MATLAB environment. This toolbox provides easy access to different supervised and unsupervised classification methods. This new application is also versatile and fully dynamic since the user can embody their own methods, that can be reused and shared. This toolbox, while extends the potentiality of MATLAB environment, it also provides a user-friendly platform to assess the results of different methodologies. In this paper it is also presented, under the new application, a study of several different supervised and unsupervised classification methods on real hyperspectral data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new method to blindly unmix hyperspectral data, termed dependent component analysis (DECA). This method decomposes a hyperspectral images into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA assumes that each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abudances are modeled as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. The effectiveness of the proposed method is illustrated using simulated data based on U.S.G.S. laboratory spectra and real hyperspectral data collected by the AVIRIS sensor over Cuprite, Nevada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução: A prematuridade constitui um fator de risco para a ocorrência de lesões ao nível do sistema nervoso central, sendo que uma idade gestacional inferior a 36 semanas potencia esse mesmo risco, nomeadamente para a paralisia cerebral (PC) do tipo diplegia espástica. A sequência de movimento de sentado para de pé (SPP), sendo uma das aprendizagens motoras que exige um controlo postural (CP) ao nível da tibiotársica, parece ser uma tarefa funcional frequentemente comprometida em crianças prematuras com e sem PC. Objetivo(s): Descrever o comportamento dos músculos da tibiotársica, tibial anterior (TA) e solear (SOL), no que diz respeito ao timing de ativação, magnitude e co-ativação muscular durante a fase I e início da fase II na sequência de movimento de SPP realizada por cinco crianças prematuras com PC do tipo diplegia espástica e cinco crianças prematuras sem diagnóstico de alteração neuromotoras, sendo as primeiras sujeitas a um programa de intervenção baseado nos princípios do conceito de Bobath – Tratamento do Neurodesenvolvimento (TND). Métodos: Foram avaliadas 10 crianças prematuras, cinco com PC e cinco sem diagnóstico de alterações neuromotoras, tendo-se recorrido à eletromiografia de superfície para registar parâmetros musculares, nomeadamente timings, magnitudes e valores de co-ativação dos músculos TA e SOL, associados à fase I e inico da fase II da sequência de movimento de SPP. Procedeu-se ao registo de imagem de modo a facilitar a avaliação dos componentes de movimento associados a esta tarefa. Estes procedimentos foram realizados num único momento, no caso das crianças sem diagnóstico de alterações neuromotoras e em dois momentos, antes e após a aplicação de um programa de intervenção segundo o Conceito de Bobath – TND no caso das crianças com PC. A estas foi ainda aplicado o Teste da Medida das Funções Motoras (TMFM–88) e a Classificação Internacional da Funcionalidade Incapacidade e Saúde – crianças e jovens (CIF-CJ). Resultados: Através da eletromiografia constatou-se que ambos os grupos apresentaram timings de ativação afastados da janela temporal considerada como ajustes posturais antecipatórios (APAs), níveis elevados de co-ativação, em alguns casos com inversão na ordem de recrutamento muscular o que foi possível modificar nas crianças com PC após o período de intervenção. Nestas, verificou-se ainda que, a sequência de movimento de SPP foi realizada com menor número de compensações e com melhor relação entre estruturas proximais e distais compatível com o aumento do score final do TMFM-88 e modificação positiva nos itens de atividade e participação da CIF-CJ. Conclusão: As crianças prematuras com e sem PC apresentaram alterações no CP da tibiotársica e níveis elevados de co-ativação muscular. Após o período de intervenção as crianças com PC apresentaram modificações positivas no timing e co-ativação muscular, com impacto funcional evidenciado no aumento do score final da TMFM-88 e modificações positivas na CIF-CJ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Norfloxacina (NFX) é um antibiótico antibacteriano indicado para combater bactérias Gram-negativas e amplamente utilizado para o tratamento de infeções no trato respiratório e urinário. Com a necessidade de realizar estudos clínicos e farmacológicos esenvolveram-se métodos de análise rápida e sensitiva para a determinação da Norfloxacina. Neste trabalho foi desenvolvido um novo sensor eletroquímico sensível e seletivo para a deteção da NFX. O sensor foi construído a partir de modificações efetuadas num elétrodo de carbono vítreo. Inicialmente o elétrodo foi modificado com a deposição de uma suspensão de nanotubos de carbono de paredes múltiplas (MWCNT) de modo a aumentar a sensibilidade de resposta analítica. De seguida um filme polímerico molecularmente impresso (MIP) foi preparado por eletrodeposição, a partir de uma solução contendo pirrol (monómero funcional) e NFX (template). Um elétrodo de controlo não impresso foi também preparado (NIP). Estudouse e caraterizou-se a resposta eletroquímica do sensor para a oxidação da NFX por voltametria de onda quadrada. Foram optimizados diversos parâmetros experimentais, tais como, condições ótimas de polimerização, condições de incubação e condições de extração. O sensor apresenta um comportamento linear entre a intensidade da corrente do pico e o logaritmo da concentração de NFX na gama entre 0,1 e 8μM. Os resultados obtidos apresentam boa precisão, com repetibilidade inferior a 6% e reprodutibilidade inferior a 9%. Foi calculado a partir da curva de calibração um limite de deteção de 0,2 μM O método desenvolvido é seletivo, rápido e de fácil manuseamento. O sensor molecularmente impresso foi aplicado com sucesso na deteção da NFX em amostras de urina real e água.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual image is a fundamental component of epiphany, stressing its immediacy and vividness, corresponding to the enargeia of the traditional ekphrasis and also playing with cultural and social meanings. Morris Beja in his seminal book Epiphany in the Modern Novel, draws our attention to the distinction made by Joyce between the epiphany originated in a common object, in a discourse or gesture and the one arising in “a memorable phase of the mind itself”. This type materializes in the “dream-epiphany” and in the epiphany based in memory. On the other hand, Robert Langbaum in his study of the epiphanic mode, suggests that the category of “visionary epiphany” could account for the modern effect of an internally glowing vision like Blake’s “The Tyger”, which projects the vitality of a real tyger. The short story, whose length renders it a fitting genre for the use of different types of epiphany, has dealt with the impact of the visual image in this technique, to convey different effects and different aesthetic aims. This paper will present some examples of this occurrence in short stories of authors in whose work epiphany is a fundamental concept and literary technique: Walter Pater, Joseph Conrad, K. Mansfield, Clarice Lispector. Pater’s “imaginary portraits” concentrate on “priviledged moments” of the lives of the characters depicting their impressions through pictorial language; Conrad tries to show “moments of awakening” that can be remembered by the eye; Mansfield suggests that epiphany, the “glimpse”, should replace plot as an internal ordering principle of her impressionist short-stories; in C. Lispector the visualization of some situations is so aggressive that it causes nausea and a radical revelation on the protagonist’s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Mestre em Bioquímica Estrutural e Funcional, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A análise forense de documentos é uma das áreas das Ciências Forenses, responsável pela verificação da autenticidade dos documentos. Os documentos podem ser de diferentes tipos, sendo a moeda ou escrita manual as evidências forenses que mais frequentemente motivam a análise. A associação de novas tecnologias a este processo de análise permite uma melhor avaliação dessas evidências, tornando o processo mais célere. Esta tese baseia-se na análise forense de dois tipos de documentos - notas de euro e formulários preenchidos por escrita manual. Neste trabalho pretendeu-se desenvolver técnicas de processamento e análise de imagens de evidências dos tipos referidos com vista a extração de medidas que permitam aferir da autenticidade dos mesmos. A aquisição das imagens das notas foi realizada por imagiologia espetral, tendo-se definidas quatro modalidades de aquisição: luz visível transmitida, luz visível refletida, ultravioleta A e ultravioleta C. Para cada uma destas modalidades de aquisição, foram também definidos 2 protocolos: frente e verso. A aquisição das imagens dos documentos escritos manualmente efetuou-se através da digitalização dos mesmos com recurso a um digitalizador automático de um aparelho multifunções. Para as imagens das notas desenvolveram-se vários algoritmos de processamento e análise de imagem, específicos para este tipo de evidências. Esses algoritmos permitem a segmentação da região de interesse da imagem, a segmentação das sub-regiões que contém as marcas de segurança a avaliar bem como da extração de algumas características. Relativamente as imagens dos documentos escritos manualmente, foram também desenvolvidos algoritmos de segmentação que permitem obter todas as sub-regiões de interesse dos formulários, de forma a serem analisados os vários elementos. Neste tipo de evidências, desenvolveu-se ainda um algoritmo de análise para os elementos correspondentes à escrita de uma sequência numérica o qual permite a obtenção das imagens correspondentes aos caracteres individuais. O trabalho desenvolvido e os resultados obtidos permitiram a definição de protocolos de aquisição de imagens destes tipos de evidências. Os algoritmos automáticos de segmentação e análise desenvolvidos ao longo deste trabalho podem ser auxiliares preciosos no processo de análise da autenticidade dos documentos, o qual, ate então, é feito manualmente. Apresentam-se ainda os resultados dos estudos feitos às diversas evidências, nomeadamente as performances dos diversos algoritmos analisados, bem como algumas das adversidades encontradas durante o processo. Apresenta-se também uma discussão da metodologia adotada e dos resultados, bem como de propostas de continuação deste trabalho, nomeadamente, a extração de características e a implementação de classificadores capazes aferir da autenticidade dos documentos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para complementar os requerimentos para a obtenção do grau de Mestre em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A intervenção humana no manuseamento de veículos submarinos operados remotamente (ROVs) é um requisito necessário para garantir o sucesso da missão e a integridade do equipamento. Contudo, a sua teleoperação não é fácil, pelo que a condução assistida destes veículos torna-se relevante. Esta dissertação propõe uma solução para este problema para ROVs de 3DOF (surge, heave e yaw). São propostas duas abordagens distintas – numa primeira propõe-se um sistema de controlo Image Based Visual Servoing (IBVS) tendo em vista a utilização exclusiva de uma câmara (sensor existente neste tipo de sistemas) por forma a melhorar significativamente a teleoperação de um pequeno ROV; na segunda, propõe-se um sistema de controlo cinemático para o plano horizontal do veículo e um algoritmo de uma manobra capaz de dotar o ROV de movimento lateral através de uma trajectória dente-de-serra. Demonstrou-se em cenários de operação real que o sistema proposto na primeira abordagem permite ao operador de um ROV com 3DOF executar tarefas de alguma complexidade (estabilização) apenas através de comandos de alto nível, melhorando assim drasticamente a teleoperação e qualidade de inspecção do veículo em questão. Foi também desenvolvido um simulador do ROV em MATLAB para validação e avaliação das manobras, onde o sistema proposto na segunda abordagem foi validado com sucesso.