981 resultados para uptake kinetics
Resumo:
Biochemical pathways involving chemical kinetics in medium concentrations (i.e., at mesoscale) of the reacting molecules can be approximated as chemical Langevin equations (CLE) systems. We address the physically consistent non-negative simulation of the CLE sample paths as well as the issue of non-Lipschitz diffusion coefficients when a species approaches depletion and any stiffness due to faster reactions. The non-negative Fully Implicit Stochastic alpha (FIS alpha) method in which stopped reaction channels due to depleted reactants are deleted until a reactant concentration rises again, for non-negativity preservation and in which a positive definite Jacobian is maintained to deal with possible stiffness, is proposed and analysed. The method is illustrated with the computation of active Protein Kinase C response in the Protein Kinase C pathway. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We have studied the kinetics of photoinduced effects in nanolayered Se/As2S3 film by in situ optical absorption measurements, which reveal that photodarkening in these films is followed by photoinduced diffusion. An increase in disorder during photodarkening and its subsequent decrease during photoinduced diffusion were also observed. The observation of photodarkening of Se at room temperature when confined between As2S3 layers suggests that the glass transition temperature of Se shifts to higher energy. The analysis shows that the atoms which take part in photodarkening play a vital role in photoinduced diffusion. The x-ray photoelectron spectroscopy measurements show the atomic movements during photoinduced diffusion. It also shows that some of the As–S bonds are converted into As–Se bonds. Since it is energetically difficult to break an As–S bond to form an As–Se bond, we assume that the new bond formations are taking place by the bond rearrangement mechanism.
Resumo:
Interaction between the hepatitis C virus (HCV) envelope protein E2 and the host receptor CD81 is essential for HCV entry into target cells. The number of E2-CD81 complexes necessary for HCV entry has remained difficult to estimate experimentally. Using the recently developed cell culture systems that allow persistent HCV infection in vitro, the dependence of HCV entry and kinetics on CD81 expression has been measured. We reasoned that analysis of the latter experiments using a mathematical model of viral kinetics may yield estimates of the number of E2-CD81 complexes necessary for HCV entry. Here, we constructed a mathematical model of HCV viral kinetics in vitro, in which we accounted explicitly for the dependence of HCV entry on CD81 expression. Model predictions of viral kinetics are in quantitative agreement with experimental observations. Specifically, our model predicts triphasic viral kinetics in vitro, where the first phase is characterized by cell proliferation, the second by the infection of susceptible cells and the third by the growth of cells refractory to infection. By fitting model predictions to the above data, we were able to estimate the threshold number of E2-CD81 complexes necessary for HCV entry into human hepatoma-derived cells. We found that depending on the E2-CD81 binding affinity, between 1 and 13 E2-CD81 complexes are necessary for HCV entry. With this estimate, our model captured data from independent experiments that employed different HCV clones and cells with distinct CD81 expression levels, indicating that the estimate is robust. Our study thus quantifies the molecular requirements of HCV entry and suggests guidelines for intervention strategies that target the E2-CD81 interaction. Further, our model presents a framework for quantitative analyses of cell culture studies now extensively employed to investigate HCV infection.
Resumo:
Base metal substituted Sn(0.95)M(0.05)O(2-delta) (M = Cu, Fe, Mn, Co) catalysts were synthesized by the solution combustion method and characterized by XRD, XPS, TEM and BET surface area analysis. The catalytic activities of these materials were investigated by performing CO oxidation. The rates and the apparent activation energies of the reaction for CO oxidation were determined for each catalyst. All the substituted catalysts showed high rates and lower activation energies for the oxidation of CO as compared to unsubstituted SnO(2). The rate was found to be much higher over copper substituted SnO(2) as compared to other studied catalysts. 100% CO conversion was obtained below 225 degrees C over this catalyst. A bifunctional reaction mechanism was developed that accounts for CO adsorption on base metal and support ions and O(2) dissociation on the oxide ion vacancy. The kinetic parameters were determined by fitting the model to the experimental data. The high rates of the CO oxidation reactions at low temperatures were rationalized by the high dissociative chemisorption of adsorbed O(2) over these catalysts.
Resumo:
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the ``nonamer binding region,'' which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Thin films of ZrO2 have been deposited by ALD on Si(100) and SIMOX using two different metalorganic complexes of Zr as precursors. These films are characterized by X-ray diffraction, transmission and scanning electron microscopies, infrared spectroscopy, and electrical measurements. These show that amorphous ZrO2 films of high dielectric quality may be grown on Si(100) starting about 400degreesC. As the growth temperature is raised, the films become crystalline, the phase formed and the microstructure depending on precursor molecular structure. The phase of ZrO2 formed depends also on the relative duration of the precursor and oxygen pulses. XPS and IR spectroscopy show that films grown at low temperatures contain chemically unbound carbon, its extent depending on the precursor. C-V measurements show that films grown on Si(100) have low interface state density, low leakage current, a hysteresis width of only 10-250 mV and a dielectric constant of similar to16-25.
Resumo:
We study the growth kinetics of nanoclusters in solution. There are two generic factors that drive growth: (a) reactions that produce the nanomaterial; and (b) diffusion of the nanomaterial due to chemical-potential gradients. We model the growth kinetics of ZnO nanoparticles via coupled dynamical equations for the relevant order parameters, We study this model both analytically and numerically. We find that there is a crossover in thenanocluster growth law: from L(t) similar to t(1/2) in the reaction-controlled regime to L(t) t(1/3) in the diffusion-controlled regime.
Resumo:
The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV.
Resumo:
Superabsorbent polymers (SAPs) of acrylic acid, sodium acrylate, and acrylamide (AM), crosslinked with ethylene glycol dimethacrylate, were synthesized by inverse suspension polymerization. The equilibrium swelling capacities of the SAPs were determined and these decreased with increasing AM content. The adsorption of the two cationic dyes, methylene blue and rhodamine 6G, on the dry as well as equilibrium swollen SAPs was investigated. The amount of the dye adsorbed at equilibrium per unit weight of the SAPs and the rate constants of adsorption were determined. The amount of the dye adsorbed at equilibrium by the SAPs decreased with increasing mol % of AM in the SAPs. The amount of the dye adsorbed at equilibrium was almost equal for the dry and equilibrium swollen SAPs. However, the equilibrium swollen SAPs adsorbed dyes at a higher rate than the dry SAPs. The higher rate of adsorption was attributed to the availability of all the anionic groups present in the fully elongated conformation of the SAPs in the equilibrium swollen state. The effect of initial dye concentration on the adsorption was also investigated and the adsorption was described by Langmuir adsorption isotherms. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Interpenetrating polymer networks (IPNs) of trimethylol propane triacrylate (TMPTA) and 1,6-hexane diol diacrylate (HDDA) at different weight ratios were synthesized. Temperature modulated differential scanning calorimetry (TMDSC) was used to determine whether the formation resulted in a copolymer or interpenetrating polymer network (IPN). These polymers are used as binders for microstereolithography (MSL) based ceramic microfabrication. The kinetics of thermal degradation of these polymers are important to optimize the debinding process for fabricating 3D shaped ceramic objects by MSL based rapid prototyping technique. Therefore, thermal and thermo-oxidative degradation of these IPNs have been studied by dynamic and isothermal thermogravimetry (TGA). Non-isothermal model-free kinetic methods have been adopted (isoconversional differential and KAS) to calculate the apparent activation energy (E a) as a function of conversion (α) in N 2 and air. The degradation of these polymers in N 2 atmosphere occurs via two mechanisms. Chain end scission plays a dominant role at lower temperature while the kinetics is governed by random chain scission at higher temperature. Oxidative degradation shows multiple degradation steps having higher activation energy than in N 2. Isothermal degradation was also carried out to predict the reaction model which is found to be decelerating. It was shown that the degradation of PTMPTA follows a contracting sphere reaction model in N 2. However, as the HDDA content increases in the IPNs, the degradation reaction follows Avrami-Erofeev model and diffusion governed mechanisms. The intermediate IPN compositions show both type of mechanism. Based on the above study, debinding strategy for MSL based microfabricated ceramic structure has been proposed. © 2012 Elsevier B.V.
Resumo:
Aminoacyl-tRNA synthetases (aaRS) catalyze the bimolecular association reaction between amino acid and tRNA by specifically and unerringly choosing the cognate amino acid and tRNA. There are two classes of such synthetases that perform tRNA-aminoacylation reaction. Interestingly, these two classes of aminoacyl-tRNA synthetases differ not only in their structures but they also exhibit remarkably distinct kinetics under pre-steady-state condition. The class I synthetases show initial burst of product formation followed by a slower steady-state rate. This has been argued to represent the influence of slow product release. In contrast, there is no burst in the case of class H enzymes. The tight binding of product with enzyme for class I enzymes is correlated with the enhancement of rate in presence of elongation factor. EF-TU. In spite of extensive experimental studies, there is no detailed theoretical analysis that can provide a quantitative understanding of this important problem. In this article, we present a theoretical investigation of enzyme kinetics for both classes of aminoacyl-tRNA synthetases. We present an augmented kinetic scheme and then employ the methods of time-dependent probability statistics to obtain expressions for the first passage time distribution that gives both the time-dependent and the steady-state rates. The present study quantitatively explains all the above experimental observations. We propose an alternative path way in the case of class II enzymes showing the tRNA-dependent amino acid activation and the discrepancy between the single-turnover and steady-state rate.
Resumo:
Using all atom molecular dynamics simulations, we report spontaneous unzipping and strong binding of small interfering RNA (siRNA) on graphene. Our dispersion corrected density functional theory based calculations suggest that nucleosides of RNA have stronger attractive interactions with graphene as compared to DNA residues. These stronger interactions force the double stranded siRNA to spontaneously unzip and bind to the graphene surface. Unzipping always nucleates at one end of the siRNA and propagates to the other end after few base-pairs get unzipped. While both the ends get unzipped, the middle part remains in double stranded form because of torsional constraint. Unzipping probability distributions fitted to single exponential function give unzipping time (tau) of the order of few nanoseconds which decrease exponentially with temperature. From the temperature variation of unzipping time we estimate the energy barrier to unzipping. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4742189]
Resumo:
More than 70 molecules of varied nature have been identified in the envelopes of carbon-rich stars through their spectral fingerprints in the microwave or far infrared regions. Many of them are carbon chain molecules and radicals, and a significant number are unique to the circumstellar medium. The determination of relevant laboratory kinetics data is critical to keep up with the development of the high spectral and spatial resolution observations and of the refinement of chemical models. Neutralneutral reactions of the CN radical with unsaturated hydrocarbons could be a dominant route in the formation of cyanopolyynes, even at low temperatures and deserve a detailed laboratory investigation. The approach we have developed aims to bridge the temperature gap between resistively heated flow tubes and shock tubes. The present kinetic measurements are obtained using a new reactor combining a high-enthalpy source with a flow tube and a pulsed laser photolysislaser-induced fluorescence system to probe the undergoing chemical reactions. The high-enthalpy flow tube has been used to measure the rate constant of the reaction of the CN radical with propane (C3H8), propene (C3H6), allene (C3H4), 1,3-butadiene (1,3-C4H6), and 1-butyne (C4H6) over a temperature range extending from 300 to 1200 K. All studied reactions of CN with unsaturated hydrocarbons are rapid, with rate coefficients greater than 10-10 cm3 center dot molecule-1 center dot s-1 and exhibit slight negative temperature dependence above room temperature. (c) 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 753766, 2012
Resumo:
A combination of ab initio and classical Monte Carlo simulations is used to investigate the effects of functional groups on methane binding. Using Moller-Plesset (MP2) calculations, we obtain the binding energies for benzene functionalized with NH2, OH, CH3, COOH, and H2PO3 and identify the methane binding sites. In all cases, the preferred binding sites are located above the benzene plane in the vicinity of the benzene carbon atom attached to the functional group. Functional groups enhance methane binding relative to benzene (-6.39 kJ/mol), with the largest enhancement observed for H2PO3 (-8.37 kJ/mol) followed by COOH and CH3 (-7.77 kJ/mol). Adsorption isotherms are obtained for edge-functionalized bilayer graphene nanoribbons using grand canonical Monte Carlo simulations with a five-site methane model. Adsorbed excess and heats of adsorption for pressures up to 40 bar and 298 K are obtained with functional group concentrations ranging from 3.125 to 6.25 mol 96 for graphene edges functionalized with OH, NH2, and COOH. The functional groups are found to act as preferred adsorption sites, and in the case of COOH the local methane density in the vicinity of the functional group is found to exceed that of bare graphene. The largest enhancement of 44.5% in the methane excess adsorbed is observed for COOH-functionalized nanoribbons when compared to H terminated ribbons. The corresponding enhancements for OH- and NH2-functionalized ribbons are 10.5% and 3.7%, respectively. The excess adsorption across functional groups reflects the trends observed in the binding energies from MP2 calculations. Our study reveals that specific site functionalization can have a significant effect on the local adsorption characteristics and can be used as a design strategy to tailor materials with enhanced methane storage capacity.
Resumo:
Pyrenylterpyridine (pytpy) oxovanadium(IV) complexes VO(pytpy)(L)]Cl-2 (1-6) of the dipyridophenazine bases (L), viz., dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido3,2-a:2',3'-c]phenazine (dppza in 4), benzo-i]dipyrido3,2-a:2',3'-c]phenazine (dppn in 5) and dipyrido3,2-a:2',3'-c]phenazine (dppz in 6) were prepared, characterized and their DNA binding, photocleavage activity and photocytotoxicity studied. The complexes which showed a d-d band near 750 nm in DMF are efficient binders to calf thymus DNA (K-b: 3.2 x 10(5)-2.9 x 10(6) M-1). The complexes showed significant pUC19 DNA cleavage in near-IR light of 785 nm forming center dot OH radicals and photocytotoxicity in HeLa cells in visible light with the benzo-i] dipyrido3,2-a:2',3'-c]phenazine complex 5 showing a remarkably low IC50 value of 0.036 mu M. Flow-cytometric analysis shows a high sub-G1 phase cell cycle arrest in HeLa cells by the complexes on photo-irradiation. The photocytotoxicity correlates well with the hydrophobicity, photosensitizing ability and DNA binding propensity of the complexes. (C) 2012 Elsevier B.V. All rights reserved.