921 resultados para tunable photodetector


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel AlN nanostructures with tunable building units of the architectures have been successfully synthesized without any catalyst or template; the subsequent photoluminescence (PL) indicates that the optical properties of the AlN nanostructures can be adjusted by tuning the architectures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Localized surface plasmon resonance (LSPR) biosensors are employed to detect target biomolecules which have particular resonance wavelengths. Accordingly, tunability of the LSPR wavelength is essential in designing LSPR devices. LSPR devices employing silver nano-particles present better efficiencies than those using other noble metals such as gold; however, silver nano-particles are easily oxidized when they come in contact with liquids, which is inevitable in biosensing applications. To attain both durability and tunabilty in a LSPR biosensor, this paper proposes alumina (AL2O3) capped silver nano-disks. It is shown that through controlling the thickness of the cap, the LSPR resonance frequency can be finely tuned over a wide range; and moreover, the cap protects silver nano-particles from oxidation and high temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By integrating together VO2’s unique near-room-temperature (RT) semiconductor–metal (S–M) phase transition with a thin silver (Ag) layer’s plasmonic properties, VO2/Ag multilayers could present a much enhanced optical transmission change when increasing the temperature from RT to over VO2’s S–M phase-transition temperature. Changing VO2 and Ag layer thicknesses can also significantly tune their transmission and absorption properties, which could lead to a few useful designs in optoelectronic and energy-saving industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum disulfide (MoS2) nanosheets have unique physical and chemical properties, which make it a perfect candidate for next generation electronic and energy storage applications. Herein, we show the successful synthesis of nitrogen-doped MoS2 nanosheets by a simple, effective and large-scale approach. MoS2 nanosheets synthesised by this method show a porous structure formed by curled and overlapped nanosheets with well-defined edges. Analysis of the nanosheets shows that they have an enlarged interlayer distance and high specific surface area. X-ray photoelectron spectroscopy analysis shows the nanosheets have Mo-N bond indicating successful nitrogen doping. The nitrogen content of the product can be modulated by adjusting the ratio of starting materials easily within the range from ca. 5.8 to 7.6 at%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A type of photo- and thermo-responsive composite microsphere composed of reduced graphene oxide nanoparticles and poly(N-isopropylacrylamide) (rGO@pNIPAM) is successfully fabricated by a facile solution mixing method. Due to the high optical absorbance and thermal conduction of rGO, the composite microspheres are endowed with the new property of photo-response, in addition to the intrinsic thermally sensitive property of pNIPAM. This new ability undoubtedly enlarges the scope of applications of the microgel spheres. Furthermore, through controlling the rGO content in the composite, the photo- and thermo-sensitivity of the composite can be effectively modulated. That is, with a lower rGO content (≤32% by weight), the composite microspheres perform only thermally induced changes, such as volume contraction (by ∼45% in diameter) and drug release, when crossing the lower critical solution temperature of pNIPAM. With a higher rGO content (∼47.5%), both temperature and light irradiation can trigger changes in the composite. However, when the rGO content is increased to around 64.5%, the thermo-responsivity of the composite disappears, and the spheres exhibit only photo-induced drug release. With a further increase in rGO content, the environmentally responsive ability of the microspheres vanishes. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of oxygen content, hydrophobicity and reduction efficiency of graphene oxide (GO) are difficult tasks because of its heterogeneous structure. Herein, we describe a novel approach for the detailed understanding of the surface chemistry of GO by studying the interactions between [Ru(bpy)3](2+) and GO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconducting GaN and Gax In1-x N nanoparticles (4-10 nm in diameter, depending on the metal ratio) with tunable indium content are prepared through a chemical synthesis (the urea-glass route). The bandgap of the ternary system depends on its composition, and therefore, the color of the final material can be turned from bright yellow (the color of pure GaN) to blue (the color of pure InN). Transmission electron microscopy (TEM and HRTEM) and scanning electron microscopy (SEM) images confirm the nanoparticle character and homogeneity of the as-prepared samples. X-ray diffraction (XRD), electron diffraction (EDX), elemental mapping, and UV/Vis, IR, and Raman spectroscopy investigations are used to confirm the incorporation of indium into the crystal structure of GaN. These nanoparticles, possessing adjusted optical properties, are expected to have potential applications in the fabrication of novel optoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

intense photoluminescence in the visible region was observed at room temperature in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The emission band maximum shows an interesting dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. These findings indicate that the photoluminescence may be directly related to unsatisfied chemical bonds correlated with the high surface area. The Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that samples milled more than 10 h present the formation of nanocrystallites with about 10-20 nm. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linear, tunable CMOS transconductance stage is introduced. Drain voltage of the input transistor operating in triode region is settled by a regulation loop and a first-order linear relationship between g(m) and a de bias voltage is achieved. In addition to easy tuning, this technique offers circuit simplicity, wide dynamic range, high input and output impedances and low consumption. The transconductor is presented on both single-ended and fully-differential versions. A 3rd-order elliptical low-pass g(m)-C filter with a nominal roll-off frequency of 2MHz is used as one example for the many applications of the proposed transconductor. SPICE data describe circuits performances and filter tunabilily Passband is tuned at a rate of 2.36KHz/mV and good linearity is indicated by a 0.89% THD for an 800mV(p-p) balanced-driven input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a design approach for a high-Q low-sensitivity OTA-C biquad bandpass section. An optimal relationship is established between transconductances defining the differencebeta - gamma in the Q-factor denominator, setting the Q-sensitivity to tuning voltages around unity. A 30-MHz filter was designed based on a 0.35 mum CMOS process and V-DD=3.3 V. A range of circuit simulation supports the theoretical analysis. Q-factor spans from 20.5 to 60, while ensuring filter stability along the tuning range. Although a triode-operating OTA is used, the procedure can be extended to other types of transconductor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linearly tunable low-voltage CMOS transconductor featuring a new adaptative-bias mechanism that considerably improves the stability of the processed-signal common,mode voltage over the tuning range, critical for very-low voltage applications, is introduced. It embeds a feedback loop that holds input devices on triode region while boosting the output resistance. Analysis of the integrator frequency response gives an insight into the location of secondary poles and zeros as function of design parameters. A third-order low-pass Cauer filter employing the proposed transconductor was designed and integrated on a 0.8-mum n-well CMOS standard process. For a 1.8-V supply, filter characterization revealed f(p) = 0.93 MHz, f(s) = 1.82 MHz, A(min) = 44.08, dB, and A(max) = 0.64 dB at nominal tuning. Mined by a de voltage V-TUNE, the filter bandwidth was linearly adjusted at a rate of 11.48 kHz/mV over nearly one frequency decade. A maximum 13-mV deviation on the common-mode voltage at the filter output was measured over the interval 25 mV less than or equal to V-TUNE less than or equal to 200 mV. For V-out = 300 mV(pp) and V-TUNE = 100 mV, THD was -55.4 dB. Noise spectral density was 0.84 muV/Hz(1/2) @1 kHz and S/N = 41 dB @ V-out = 300 mV(pp) and 1-MHz bandwidth. Idle power consumption was 1.73 mW @V-TUNE = 100 mV. A tradeoff between dynamic range, bandwidth, power consumption, and chip area has then been achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A linearly-tunable ULV transconductor featuring excellent stability of the processed signal common-mode voltage upon tuning, critical for very-low voltage applications, is presented. Its employment to the synthesis of CMOS gm-C high-frequency and voiceband filters is discussed. SPICE data describe the filter characteristics. For a 1.3 V-supply, their nominal passband frequencies are 1.0 MHz and 3.78 KHz, respectively, with tuning rates of 12.52 KHz/mV and 0.16 KHz/m V, input-referred noise spectral density of 1.3 μV/Hz1/2 and 5.0μV/Hz1/2 and standby consumption of 0.87 mW and 11.8 μW. Large-signal distortion given by THD = 1% corresponds to a differential output-swing of 360 mVpp and 480 mVpp, respectively. Common-mode voltage deviation is less than 4 mV over tuning interval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low-voltage, low-power OTA-C sinusoidal oscillator based on a triode-MOSFET transconductor is here discussed. The classical quadrature model is employed and the transconductor inherent nonlinear characteristic with input voltage is used as the amplitude-stabilization element. An external bias VTUNE linearly adjusts the oscillation frequency. According to a standard 0.8μm CMOS n-well process, a prototype was integrated, with an effective area of 0.28mm2. Experimental data validate the theoretical analysis. For a single 1.8V-supply and 100mV≤VTUNE≤250mV, the oscillation frequency fo ranges from 0.50MHz to 1.125MHz, with a nearly constant gain KVCO=4.16KHz/mV. Maximum output amplitude is 374mVpp @1.12MHz. THD is -41dB @321mVpp. Maximum average consumption is 355μW.