924 resultados para trend pattern
Resumo:
Spatial pattern metrics have routinely been applied to characterize and quantify structural features of terrestrial landscapes and have demonstrated great utility in landscape ecology and conservation planning. The important role of spatial structure in ecology and management is now commonly recognized, and recent advances in marine remote sensing technology have facilitated the application of spatial pattern metrics to the marine environment. However, it is not yet clear whether concepts, metrics, and statistical techniques developed for terrestrial ecosystems are relevant for marine species and seascapes. To address this gap in our knowledge, we reviewed, synthesized, and evaluated the utility and application of spatial pattern metrics in the marine science literature over the past 30 yr (1980 to 2010). In total, 23 studies characterized seascape structure, of which 17 quantified spatial patterns using a 2-dimensional patch-mosaic model and 5 used a continuously varying 3-dimensional surface model. Most seascape studies followed terrestrial-based studies in their search for ecological patterns and applied or modified existing metrics. Only 1 truly unique metric was found (hydrodynamic aperture applied to Pacific atolls). While there are still relatively few studies using spatial pattern metrics in the marine environment, they have suffered from similar misuse as reported for terrestrial studies, such as the lack of a priori considerations or the problem of collinearity between metrics. Spatial pattern metrics offer great potential for ecological research and environmental management in marine systems, and future studies should focus on (1) the dynamic boundary between the land and sea; (2) quantifying 3-dimensional spatial patterns; and (3) assessing and monitoring seascape change.
Resumo:
We examined seasonal and annual variation in numbers of Steller (northern) sea lions (Eumetopias jubatus) at the South Farallon Islands from counts conducted weekly from 1974 to 1996. Numbers of adult and subadult males peaked during the breeding season (May–July), whereas numbers of adult females and immature individuals peaked during the breeding season and from late fall through early winter (September–December). The seasonal pattern varied significantly among years for all sexes and age classes. From 1977 to 1996, numbers present during the breeding season decreased by 5.9% per year for adult females and increased by 1.9% per year for subadult males. No trend in numbers of adult males was detected. Numbers of immature individuals also declined by 4.5% per year during the breeding season but increased by 5.0% per year from late fall through early winter. Maximum number of pups counted declined significantly through time, although few pups were produced at the South Farallon Islands. The ratio of adult females to adult males averaged 5.2:1 and declined significantly with each year, whereas no trend in the ratio of pups to adult females was discernible. Further studies are needed to determine if reduced numbers of adult females in recent years have resulted from reduced survival of juvenile or adult females or from changes in the geographic distribution of females.
Resumo:
This paper is an examination of precipitation trends in California for 100 years based on 96 rain records. The study resulted from an attempt to develop a wetness index for the San Francisco Bay area, where declining rainfall trends indicated a lot more rainfall in the first 50 years of the study period. A regular pattern of decline was found in California coastal stations, concurrent with an increasing trend at inland stations.
Resumo:
Fluctuations in primary productivity at two subalpine lakes reveal both meteorological and biological influences. At Castle Lake, California, large-scale climate events such as the El Niño/Southern Oscillation affect total annual production and, combined with human fishing activity, modify the seasonal pattern of productivity. At Lake Tahoe, California-Nevada, local spring weather conditions modulate annual production and its seasonality by determining the depth of mixing and resulting internal nutrient load. Climatic conditions also contribute to deviations from the long-term trend in productivity by increasing the incidence of forest fires and through anomalous external nutrient loads during precipitation extremes. A 3-year cycle in productivity of as yet unknown origin has also been detected at Lake Tahoe.
Resumo:
The activity pattern of the black turban snail, Tegula funebralis (A. Adams, 1854) at Pacific Grove, California, is the subject of this article. Field studies were carried out to follow the locomotory and feeding activities of individuals of T. funebralis, to determine how much of each animal's time was spent in each of these activities, and when and under what environmental conditions they occurred.