924 resultados para total iron binding capacity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Refractive index and chemical composition were determined for glass shards contained in more than 100 tephra layers in DSDP Leg 58 sediment cores collected in the Shikoku Basin, North Philippine Sea. The refractive index is consistent with chemical composition. Refractive index and total iron show a linear relationship. Tephra in Pleistocene and Pliocene sediments is mostly rhyolitic and dacitic (non-alkali), whereas tephra in the Miocene shows wide composition variations in the eastern part of the basin. Basaltic tephra is recognized in Miocene sediments at Sites 443 and 444, but not at Site 442, west of the other two sites. This indicates that the basaltic tephra came from eruption relatively close to those drill sites (perhaps the Kinan Seamounts and the Shichito-Iwo Jima volcanic arc), although the exact source has not been identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrothermal mounds on the southern flank of the Galapagos Spreading Center are characterized by the following main features: 1) They are located over a young basement (0.5 to 0.85 m.y. of age) in a region known for its high sedimentation rate (about 5 cm/10**3 y.) because it is part of the equatorial high biological productivity zone. 2) They are located in a region with generally high heat flow (8 to 10 HFU). The highest heat-flow measurements (up to 10**3 HFU) correspond to mound peaks (Williams et al., 1979), where temperatures up to 15°C were measured during a dive of the submersible Alvin (Corliss et al., 1978). 3) They are often located on small vertical faults which displace the basement by a few meters (Lonsdale, 1977) and affect the 25- to 50-meter-thick sediment cover. Most of these characteristics have also been observed in the other three known cases of hydrothermal deposits with mineral parageneses similar to that of the Galapagos mounds. However, the case of the hydrothermal mounds south of the Galapagos Spreading Center is unique because of the unusual thickness of the hydrothermal deposits present. The mounds are composed of several, up to 4.5-meter-thick, layers of green clays which, in one case (Hole 509B), are overlain by about 1.4 meters of Mn-oxide crust. We suspect that such a large accumulation of hydrothermal products results from the "funnelling" of the hydrothermal solutions exiting from a highly permeable basement along the faults. This chapter reports a preliminary study of those green clays collected by hydraulic piston coring of the Galapagos mounds during Deep Sea Drilling Project (DSDP) Leg 70 of the D/V Glomar Challenger. Green clays have also been reported from three presently or recently active hydrothermal areas in or close to spreading centers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During RV Polarstern cruise ANT-XXIII/4 in 2006, a gravity core (PS69/335-2) and a giant box core (PS69/335-1) were retrieved from Maxwell Bay off King George Island (KGI). Comprehensive geochemical (bulk parameters, quantitative XRF, Inductively Coupled Plasma Mass Spectrometry) and radiometric dating analyses (14C, 210Pb) were performed on both cores. A comparison with geochemical data from local bedrock demonstrates a mostly detrital origin for the sediments, but also points to an overprint from changing bioproductivity in the overlying water column in addition to early diagenetic processes. Furthermore, ten tephra layers that were most probably derived from volcanic activity on Deception Island were identified. Variations in the vertical distribution of selected elements in Maxwell Bay sediments further indicate a shift in source rock provenance as a result of changing glacier extents during the past c. 1750 years that may be linked to the Little Ice Age and the Medieval Warm Period. Whereas no evidence for a significant increase in chemical weathering rates was found, 210Pb data revealed that mass accumulation rates in Maxwell Bay have almost tripled since the 1940s (0.66 g cm-2 yr-1 in AD 2006), which is probably linked to rapid glacier retreat in this region due to recent warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalts from Hole 504B, Leg 83, exhibit remarkable uniformity in major and trace element composition throughout the 1075.5 m of basement drilled. The majority of the basalts, Group D', have unusual compositions relative to normal (Type I) mid-ocean ridge basalts (MORB). These basalts have relatively high mg values (0.60-0.70) and CaO abundances (11.7-13.7%; Ca/Al = 0.78-0.89), but exhibit a marked depletion in compatible trace elements (Cr and Ni); moderately incompatible trace elements (Zr, Y, Ti, etc.); and highly incompatible trace elements (Nb, LREE, etc.). Petrographic and compositional data indicate that most of these basalts are evolved, having fractionated significant amounts of plagioclase, olivine, and clinopyroxene. Melting experiments on similar basalt compositions from the upper portion of Hole 504B (Leg 70; Autio and Rhodes, 1983) indicate that the basalts are co-saturated with olivine and plagioclase and often clinopyroxene on the 1-atm. liquidus. Two rarely occurring groups, M' and T, are compositionally distinct from Group D' basalts. Group T is strongly depleted in all magmaphile elements except the highly incompatible ones (Nb, La, etc.), while Group M' has moderate concentrations of both moderately and highly incompatible trace elements and is similar to Type I MORB. Groups M' and T cannot be related to Group D' nor to each other by crystal fractionation, crystal accumulation, or magma mixing. The large differences in magmaphile element ratios (Zr/Nb, La/Yb) among these three chemical groups may be accounted for by complex melting models and/or local heterogeneity of the mantle beneath the Costa Rica Ridge. Xenocrysts and xenoliths of plagioclase and clinopyroxene similar in texture and mineral composition to crystals in coarse-grained basalts from the lower portion of the hole are common in Hole 504B basalts. These suggest that addition of solid components either from conduit or magma chamber walls has occurred and may be a common source of disequilibrium crystals in these basalts. However, mixing of plagioclase-laden depleted melts (similar to the Costa Rica Ridge Zone basalts) with normal MORB magmas could provide an alternate source for some refractory plagioclase crystals found out of equilibrium in many phyric MORB. The uniformity of major element compositions in Hole 504B basalts affords an ideal situation for investigating the effects of alteration on some major and trace elements in oceanic basalts. Alteration observed in whole-rock samples records primarily two events - a high-temperature and a low-temperature phase. High-temperature phases include: chlorite, talc, albite, actinolite, sphene, quartz, and pyrite. The low-temperature phases include smectite (saponite), epistilbite or laumontite, and minor calcite. Laumontite may actually straddle the gap between the low- and high-temperature mineral assemblages. Alteration is restricted primarily to partial replacement of primary phases. Metamorphic grade, in general, increases from the top to the bottom of Hole 504B (Legs 69, 70, and 83) as seen in the change from a smectiteto- chlorite-dominated secondary mineral assemblage. However, a systematic progression for the interval recovered during Leg 83 is not apparent. Rather, the extent of alteration appears to be a function of the initial texture and fracture density. Variations in whole-rock major and trace element concentrations cannot be attributed convincingly to any differences in alteration observed. Compositional characteristics of the secondary minerals indicated that extensive remobilization of elements has not occurred; local redistribution is suggested in most cases. Thus, the major and trace element signature of these basalts remains effectively the same as the original composition prior to alteration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At Site 493, DSDP Leg 66, dioritic basement was reached below lower Miocene (NN1 Zone, 22-24 Ma) terrigenous sediments. Petrographical, mineralogical (including microprobe analyses), and chemical features of the dioritic rocks reveal their magmatic affinity with the calc-alkaline series. Furthermore, their radiometric age (35.3 m.y.) links the basement to the Sierra Madre Occidental in Mexico and to mid-Tertiary volcanic arcs in Central America. The presence of Oligocene diorite 50 km from the trench axis confirms the truncation of the south Mexico margin, which we explain as the result of a 650 to 800 km left-lateral displacement of Central America relative to North America. Truncation must have occurred in the late Miocene, after the diorite intrusion and prior to the present subduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eocene-Oligocene metalliferous sediments and associated lithologies from the central equatorial Pacific are described in detail. Geochemical analyses of 54 sediment and 2 basalt samples are presented for 34 elements. Detailed stratigraphic and statistical analyses of these data, combined with mineralogic studies, indicate the presence of volcanic glass and seven main mineral phases: biogenic calcite and opal, Fe smectite, goethite, dMnO2, carbonate fluorapatite, and barite. Fe smectite formed by reactions between Fe oxyhydroxides and biogenic opal, causing the dissolution of calcite and the precipitation of barite. Diagenesis was oxic. Sediments have rare earth element distributions similar to those in seawater. The metal content of the sediments is related to competition between the supply rates of hydrothermal and biogenic particles, but has been enhanced by early diagenetic processes. Eocene-Oligocene metalliferous sediments compare closely to those currently being deposited in the Bauer Basin and on the flanks of the East Pacific Rise. There is, however, no evidence that they were deposited in close proximity to an active hydrothermal system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Leg 67, the Middle-America Trench transect off Guatemala was drilled across the convergent margin of southern Mexico and Central America south of the Tehuantepec Ridge. The data of Leg 66, north of the Tehuantepec Ridge, and that of Leg 67 provided the opportunity to establish a continuous chronology of airborne volcanic ashes intercalated within the sediments (Aubouin et al., 1979; von Huene et al., 1980). Sites of both expeditions are favorably located for obtaining a good record of the explosive volcanicity of these areas, given the proximity of the volcanic sources and the position of the sites under the prevailing winds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eleven serpentine samples from DSDP Leg 84 and four serpentinized ultramafic samples from Costa Rica and Guatemala were described and their relict mineral compositions measured by electron microprobe to try to determine the origin of the Leg 84 serpentinites and their relationship to the ultramafic rocks of the onshore ophiolites. The Leg 84 samples comprise more than 90% secondary minerals, principally serpentine, with hematitic and opaque oxides, and minor talc and smectites. Four distinct textural types can be identified according to the distribution of opaque phases and smectite. Remnants of spinel, olivine, orthopyroxene, and clinopyroxene occur variously in the samples; spinal occurs in all the samples. Textural evidence suggests that the serpentinites were originally clinopyroxene-bearing harzburgites. Relict mineral compositions are refractory and relatively uniform: olivine, Fo90.6-90.9; orthopyroxene, En90-91; clinopyroxene, Wo47 En50 Fs3; spinels, Cr/Cr + Al = 0.4-0.6. 567A-29-2, 30-35 cm has slightly more magnesian olivines (Fo92) and orthopyroxene, and more aluminous spinels (Cr/Cr + Al = 0.3). These compositions are similar to those inferred for refractory upper-mantle materials and also fall within the range of compositions for relict minerals in abyssal peridotites. They could be of oceanic origin. The onshore samples include serpentinites, a clinopyroxene-bearing harzburgite, and a clinopyroxenite. They too have magnesium-rich silicate assemblages, but relative to the drilled samples have more iron-rich olivines (Fogo) and more aluminous and sodic pyroxenes; spinels which are clearly relicts are very aluminum-rich (Cr/Cr + Al = 0.1-0.25). These samples are most likely mantle materials, but significantly less depleted. Their relationship to the drilled samples is unclear. Serpentinites were the most common basement materials recovered during Leg 84, and there appears to be a bimodal assemblage (basalt/diabase and serpentine) of igneous rocks sampled from the trench slope. Diapirism of serpentine throughout the trench slope and forearc is suggested as an explanation for this distribution of samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifty-two samples of basalt from the four holes drilled on the Leg 81 transect across the Rockall margin were analyzed by X-ray fluorescence for Rb, Sr, Y, Zr, and Nb. On the basis of these results 13 samples were chosen for major and supplementary trace-element analysis. The results show no progressive change in the character of the volcanism, from Hole 555 in the continental domain through Holes 552 and 553A in the dipping reflector sequence to Hole 554A on the outer high. Two distinct magma types are present, apparently reflecting heterogeneity of the underlying mantle, but both types are present in both Holes 553A and 555, while Hole 552 and Hole 554 are each composed of a single type. Both magma types have a clear ocean-floor basalt signature when examined by discrimination diagrams, as does the basalt from Deep Sea Drilling Project Site 112, which formed at the same time as the Leg 81 basalts slightly farther south along the spreading center. In contrast, the basalts of East Greenland, formed at the same time, are more enriched in incompatible elements and have a within-plate geochemical signature, as is found in some basalts of Iceland today. Clearly the present distinction in geochemistry between the basalts of Iceland and those erupting well south on the Reykjanes Ridge was already established when continental splitting took place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here chemical analyses of sulfide and other minerals occurring in the massive sulfide deposit cored at Site 471. Details of the mineralogy and inferred paragenesis of the deposit will be reported elsewhere. The sulfide deposit at Site 471 occurs between overlying pelagic sediment and underlying basalt. The deposit is vertically zoned and consists, from top to bottom, of the following mineral assemblages: (1) pyrite, chalcopyrite, and Zn-sulfide in chert and calcite gangue (about 35 cm thick); (2) a 5-cm-thick metalliferous sediment layer described in detail by Leinen (this volume); and (3) a 4-cm-thick chert layer. The overlying sediment is a calcareous silty claystone that contains middle Miocene coccoliths (Bukry, this volume). The underlying basalt has been extensively chloritized and veined with calcite. In places feldspars are albitized, and calcite occurs as pseudomorphs after olivine. Relict textures suggest that the basalt grades into diabase and gabbro with increasing depth. Neither stock work nor disseminated sulfides was observed in the altered rocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Examining volcanic materials in deep sea sediments may be one of the most important tasks of the Deep Sea Drilling Project. The investigation of volcanic ash near young source volcanoes is particularly helpful in enabling us to infer the history of volcanism in and around the island arcs. In the area of the Japanese islands volcanic deposits are usually distributed east of the source by prevailing westerly winds. It is also possible that some deep sea tephra has its source in a large, already known land volcanism.