970 resultados para thermal stress


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To test the hypothesis that the difference in the coefficient of thermal contraction of the veneering porcelain above (˛liquid) and below (˛solid) its Tg plays an important role in stress development during a fast cooling protocol of Y-TZP crowns. Methods. Three-dimensional finite element models of veneered Y-TZP crowns were developed. Heat transfer analyses were conducted with two cooling protocols: slow (group A) and fast (groups B–F). Calculated temperatures as a function of time were used to determine the thermal stresses. Porcelain ˛solid was kept constant while its ˛liquid was varied, creating different ˛/˛solid conditions: 0, 1, 1.5, 2 and 3 (groups B–F, respectively). Maximum ( 1) and minimum ( 3) residual principal stress distributions in the porcelain layer were compared. Results. For the slowly cooled crown, positive 1 were observed in the porcelain, orientated perpendicular to the core–veneer interface (“radial” orientation). Simultaneously, negative 3 were observed within the porcelain, mostly in a hoop orientation (“hoop–arch”). For rapidly cooled crowns, stress patterns varied depending on ˛/˛solid ratios. For groups B and C, the patterns were similar to those found in group A for 1 (“radial”) and 3 (“hoop–arch”). For groups D–F, stress distribution changed significantly, with 1 forming a “hoop-arch” pattern while 3 developed a “radial” pattern. Significance. Hoop tensile stresses generated in the veneering layer during fast cooling protocols due to porcelain high ˛/˛solid ratio will facilitate flaw propagation from the surface toward the core, which negatively affects the potential clinical longevity of a crown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of cryogenic and stress relief treatments on temper carbide precipitation in the cold work tool steel AISI D2 were studied. For the cryogenic treatment the temperature was −196°C and the holding time was 2, 24 or 30 h. The stress relief heat treatment was carried at 130°C/90 min, when applied. All specimens were compared to a standard thermal cycle. Specimens were studied using metallographic characterisation, X-ray diffraction and thermoelectric power measurements. The metallographic characterisation used SEM (scanning electron microscopy) and SEM-FEG (SEM with field emission gun), besides OM (optical microscopy). No variation in the secondary carbides (micrometre sized) precipitation was found. The temper secondary carbides (nanosized) were found to be more finely dispersed in the matrix of the specimens with cryogenic treatment and without stress relief. The refinement of the temper secondary carbides was attributed to a possible in situ carbide precipitation during tempering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Provision of additional floor heating (33 to 34 degrees C) at birth and during the early postnatal hours is favorable for newborn piglets of domestic sows (Sus scrofa). We investigated whether this relatively high temperature influenced sow behavior and physiology around farrowing. One-half of 28 second-parity pregnant sows were randomly chosen to be exposed to floor heating 12 h after onset of nest building and until 48 h after birth of the first piglet (heat treatment), whereas the rest of the sows entered the control group (control treatment) with no floor heating. Hourly blood sampling from 8 h before and until 24 h after the birth of the first piglet was used for investigation of temporal changes in plasma concentrations of oxytocin, cortisol, and ACTH. In addition, occurrence and duration of sow postures were recorded -8 to +48 h relative to the birth of the first piglet. There was a clear temporal development in sow behavior and hormone concentrations (ACTH, cortisol, and oxytocin) across parturition (P < 0.001), independent of treatment. In general, hormone concentrations increased from the start to the end of farrowing. The observed oxytocin increase and peak late in farrowing coincided with the passive phase where sows lie laterally with an overall reduced activity. Floor heating increased the mean concentration of cortisol (P = 0.02; estimated as 29% greater than in controls) and tended to increase the mean concentration of ACTH (P = 0.08; estimated as 17% greater than in controls), but we did not find any treatment effect on mean oxytocin concentrations, the course of parturition, or the behavior of sows. Behavioral thermoregulation may, however, have lost some function for the sows because the floor was fully heated in our study. In addition, exposure to heat decreased the between-sow variation of plasma oxytocin (approximately 31% less relative to control) and ACTH (approximately 46% less relative to control). Whether this decreased variation may be indicative of acute stress or linked to other biological events is unclear. In conclusion, inescapable floor heating (around 33.5 degrees C) may be considered a stressor for sows around farrowing, giving rise to elevated plasma concentrations of cortisol, but without concurrent changes in oxytocin or behavioral activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct and analyze thermal spinning giant gravitons in type II/M-theory based on spherically wrapped black branes, using the method of thermal probe branes originating from the blackfold approach. These solutions generalize in different directions recent work in which the case of thermal (non-spinning) D3-brane giant gravitons was considered, and reveal a rich phase structure with various new properties. First of all, we extend the construction to M-theory, by constructing thermal giant graviton solutions using spherically wrapped M2- and M5-branes. More importantly, we switch on new quantum numbers, namely internal spins on the sphere, which are not present in the usual extremal limit for which the brane world volume stress tensor is Lorentz invariant. We examine the effect of this new type of excitation and in particular analyze the physical quantities in various regimes, including that of small temperatures as well as low/high spin. As a byproduct we find new stationary dipole-charged black hole solutions in AdS m × S n backgrounds of type II/M-theory. We finally show, via a double scaling extremal limit, that our spinning thermal giant graviton solutions lead to a novel null-wave zero-temperature giant graviton solution with a BPS spectrum, which does not have an analogue in terms of the conventional weakly coupled world volume theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal convection in the Antarctic and Greenland ice sheets has been dismissed on the grounds that radio-echo stratigraphy is undisturbed for long distances. However, the undisturbed stratigraphy lies, for the most part, above the density inversion in polar ice sheets and therefore does not disprove convection. An echo-free zone is widespread below the density inversion, yet nobody has cited this as a strong indication that convection is indeed present at d�pth. A generalized Rayleigh criterion for thermal convection in e1astic-viscoplastic polycrystalline solids heated from below is developed and applied to ice-sheet convection. An infinite Rayleigh number at the onset of primary creep decreases with time and becomes constant when secondary creep dominates, suggesting that any thermal buoyancy stress can initiate convection but convection cannot be sustained below a buoyancy stress of about 3 kPa. An analysis of the temperature profile down the Byrd Station core hole suggests that about 1000 m of ice below the density inversion will sustain convection. Creep along the Byrd Station strain network, radar sounding in East Antarctica, and seismic sounding in West Antarctica are examined for evidence of convective creep superimposed on advective creep. It is concluded that the evidence for convection is there, if we look for it with the intention offinding it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates thermally induced tensile stresses in ceramic tilings. Daily and seasonal thermal cycles, as well as, rare but extreme events, such as a hail-storm striking a heated terrace tiling, were studied in the field and by numerical modeling investigations. The field surveys delivered temperature– time diagrams and temperature profiles across tiling systems. These data were taken as input parameters for modeling the stress distribution in the tiling system in order to detect potential sites for material failure. Dependent on the thermal scenario (e.g., slow heating of the entire structure during morning and afternoon, or a rapid cooling of the tiles by a rain storm) the modeling indicates specific locations with high tensile stresses. Typically regions along the rim of the tiling field showed stresses, which can become critical with respect to the adhesion strength. Over the years, ongoing cycles of thermal expansion–contraction result in material fatigue promoting the propagation of cracks. However, the installation of flexible waterproofing membranes (applied between substrate and tile adhesive) represents an efficient technical innovation to reduce such crack propagation as confirmed by both numerical modeling results and microstructural studies on real systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of heat stress on the functioning of the photosynthetic apparatus was examined in pea (Pisum sativum L.) plants grown at control (25 °C; 25 °C-plants) or moderately elevated temperature (35 °C; 35 °C-plants). In both types of plants net photosynthesis (Pn) decreased with increasing leaf temperature (LT) and was more than 80% reduced at 45 °C as compared to 25 °C. In the 25 °C-plants, LTs higher than 40 °C could result in a complete suppression of Pn. Short-term acclimation to heat stress did not alter the temperature response of Pn. Chlorophyll a fluorescence measurements revealed that photosynthetic electron transport (PET) started to decrease when LT increased above 35 °C and that growth at 35 °C improved the thermal stability of the thylakoid membranes. In the 25 °C-plants, but not in the 35 °C-plants, the maximum quantum yield of the photosystem II primary photochemistry, as judged by measuring the Fv/Fm ratio, decreased significantly at LTs higher than 38 °C. A post-illumination heat-induced reduction of the plastoquinone pool was observed in the 25 °C-plants, but not in the 35 °C-plants. Inhibition of Pn by heat stress correlated with a reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Western-blot analysis of Rubisco activase showed that heat stress resulted in a redistribution of activase polypeptides from the soluble to the insoluble fraction of extracts. Heat-dependent inhibition of Pn and PET could be reduced by increasing the intercellular CO2 concentration, but much more effectively so in the 35 °C-plants than in the 25 °C-plants. The 35 °C-plants recovered more efficiently from heat-dependent inhibition of Pn than the 25 °C-plants. The results show that growth at moderately high temperature hardly diminished inhibition of Pn by heat stress that originated from a reversible heat-dependent reduction of the Rubisco activation state. However, by improving the thermal stability of the thylakoid membranes it allowed the photosynthetic apparatus to preserve its functional potential at high LTs, thus minimizing the after-effects of heat stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a first experiment, a reactively sputtered amorphous Ta₄₂Si₁₃N₄₅ film about 260 nm thick deposited on a flat and smooth alumina substrate was thermally annealed in air for 30 min and let cooled again repeatedly at successively higher temperatures from 200 to 500 °C. This treatment successively and irreversibly increases the room temperature resistivity of the film monotonically from its initial value of 670 μΩ cm to a maximum of 705 μΩ cm (+5.2 %). Subsequent heat treatments at temperatures below 500 °C and up to 6 h have no further effect on the room temperature resistivity. The new value remains unchanged after 3.8 years of storage at room temperature. In a second experiment, the evolution of the initially compressive stress of a film similarly deposited by reactive sputtering on a 2-inch silicon wafer was measured by tracking the wafer curvature during similar thermal annealing cycles. A similar pattern of irreversible and reversible changes of stress was observed as for the film resistivity. Transmission electron micrographs and secondary ion mass profiles of the film taken before and after thermal annealing in air establish that both the structure and the composition of the film scarcely change during the annealing cycles. We reason that the film stress is implicated in the resistivity change. In particular, to interpret the observations, a model is proposed where the interface between the film and the substrate is mechanically unyielding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three features of the heat shock response, reorganization of protein expression, intracellular accumulation of trehalose, and alteration in unsaturation degree of fatty acids were investigated in the thermophilic fungus Chaetomium thermophile and compared to the response displayed by a closely related mesophilic species, C. brasiliense. Thermophilic heat shock response paralleled the mesophilic response in many respects like (i) the temperature difference observed between normothermia and the upper limit of translational activity, (ii) the transient nature of the heat shock response at the level of protein expression including both the induction of heat shock proteins (HSPs) as well as the repression of housekeeping proteins, (iii) the presence of representatives of high-molecular-weight {HSPs} families, (iv) intracellular accumulation of trehalose, and finally (v) modifications in fatty acid composition. On the other hand, a great variability between the two organisms was observed for the proteins expressed during stress, in particular a protein of the {HSP60} family that was only observed in C. thermophile. This peptide was also present constitutively at normal temperature and may thus fulfil thermophilic functions. It is shown that accumulation of trehalose does not play a part in thermophily but is only a stress response. C. thermophile contains less polyunsaturated fatty acids at normal temperature than C. brasiliense, a fact that can be directly related to thermophily. When subjected to heat stress, both organisms tended to accumulate shorter and less unsaturated fatty acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested the hypothesis that development of the Antarctic urchin Sterechinus neumayeri under future ocean conditions of warming and acidification would incur physiological costs, reducing the tolerance of a secondary stressor. The aim of this study is twofold: (1) quantify current austral spring temperature and pH near sea urchin habitat at Cape Evans in McMurdo Sound, Antarctica and (2) spawn S. neumayeri in the laboratory and raise early developmental stages (EDSs) under ambient (-0.7 °C; 400 µatm pCO2) and future (+2.6 °C; 650 and 1,000 µatm pCO2) ocean conditions and expose four EDSs (blastula, gastrula, prism, and 4-arm echinopluteus) to a one hour acute heat stress and assess survivorship. Results of field data from 2011 to 2012 show extremely stable inter-annual pH conditions ranging from 7.99 to 8.08, suggesting that future ocean acidification will drastically alter the pH-seascape for S. neumayeri. In the laboratory, S. neumayeri EDSs appear to be tolerant of temperatures and pCO2 levels above their current habitat conditions. EDSs survived acute heat exposures >20 °C above habitat temperatures of -1.9 °C. No pCO2 effect was observed for EDSs reared at -0.7 °C. When reared at +2.6 °C, small but significant pCO2 effects were observed at the blastula and prism stage, suggesting that multiple stressors are more detrimental than single stressors. While surprisingly tolerant overall, blastulae were the most sensitive stage to ocean warming and acidification. We conclude that S. neumayeri may be unexpectedly physiologically tolerant of future ocean conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current context of environmental change, ocean acidification is predicted to affect the cellular processes, physiology and behaviour of all marine organisms, impacting survival, growth and reproduction. In relation to thermal tolerance limits, the effects of elevated pCO2 could be expected to be more pronounced at the upper limits of the thermal tolerance window. Our study focused on Crepidula fornicata, an invasive gastropod which colonized shallow waters around European coasts during the 20th century. We investigated the effects of 10 weeks' exposure to current (380 µatm) and elevated (550, 750, 1,000 µatm) pCO2 on this engineer species using an acute temperature increase (1 °C/12 h) as the test. Respiration rates were measured on both males (small individuals) and females (large individuals). Mortality increased suddenly from 34 °C, particularly in females. Respiration rate in C. fornicata increased linearly with temperature between 18 and 34 °C, but no differences were detected between the different pCO2 conditions either in the regressions between respiration rate and temperature or in Q10 values. In the same way, condition indices were similar in all the pCO2 treatments at the end of the experiment, but decreased from the beginning of the experiment. This species was highly resistant to acute exposure to high temperature regardless of pCO2 levels, even though food was limited during the experiment. Crepidula fornicata appears to have either developed resistance mechanisms or a strong phenotypic plasticity to deal with fluctuations of physicochemical parameters in its habitat. This suggests that invasive species may be more resistant to future environmental changes than its native competitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of elevated temperature and high pCO2 on the metabolism of Galaxea fascicularis were studied with oxygen and pH microsensors. Photosynthesis and respiration rates were evaluated from the oxygen fluxes from and to the coral polyps. High-temperature alone lowered both photosynthetic and respiration rates. High pCO2 alone did not significantly affect either photosynthesis or respiration rates. Under a combination of high-temperature and high-CO2, the photosynthetic rate increased to values close to those of the controls. The same pH in the diffusion boundary layer was observed under light in both (400 and 750 ppm) CO2 treatments, but decreased significantly in the dark as a result of increased CO2. The ATP contents decreased with increasing temperature. The effects of temperature on the metabolism of corals were stronger than the effects of increased CO2. The effects of acidification were minimal without combined temperature stress. However, acidification combined with higher temperature may affect coral metabolism due to the amplification of diel variations in the microenvironment surrounding the coral and the decrease in ATP contents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main problems of watermelon crops in Sou theast Spain is the thermal difference because of c limatic conditions that appear during the first stages of the crop. The objective of this work was to evaluate the effect of inducing the systemic acq uired resistance (SAR) and the induced systemic resistance (ISR) through the application of jasmonic ac id (JA) and benzoic acid (BA), respectively, to counter the abiotic stress. We assessed two treatments of JA and BA, T1 (500 mg·kg-1 + 500 mg·kg -1 ) and T 2 (2000 mg·kg -1 + 2000 mg·kg -1), as well as a control test using an experimental design of randomized blocks with four replications. The results obtained for kg·m -2, fruits/m², kg/plant and fruits/plant did not show statistically significant differences. However, we obtained statistically sig nificant differences in the average fruit weight co mpared with the control test in the two experiments carried out in 2009 and 2010. The results showed that there was no metabolic cost in the plants when applying the assessed treatments of JA and BA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized. I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view)are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized.