932 resultados para the degree of polarization
Resumo:
Purpose: This study evaluated the degree of conversion (DC) of four indirect resin composites (IRCs) with various compositions processed in different polymerization units and investigated the effect of thermal aging on the flexural strength and Vicker's microhardness.Materials and Methods: Specimens were prepared from four IRC materials, namely Gr 1: Resilab (Wilcos); Gr2: Sinfony (3M ESPE); Gr3: VITA VMLC (VITA Zahnfabrik); Gr4: VITA Zeta (VITA Zahnfabrik) using special molds for flexural strength test (N = 80, n = 10 per group) (25 x 2 x 2 mm(3), ISO 4049), for Vicker's microhardness test (N = 80, n = 10 per group) (5 x 4 mm(2)) and for DC (N = 10) using FT-Raman Spectroscopy. For both flexural strength and microhardness tests, half of the specimens were randomly stored in distilled water at 37 degrees C for 24 hours (Groups 1 to 4), and the other half (Groups 5 to 8) were subjected to thermocycling (5000 cycles, 5 to 55 +/- 1 degrees C, dwell time: 30 seconds). Flexural strength was measured in a universal testing machine (crosshead speed: 0.8 mm/min). Microhardness test was performed at 50 g. The data were analyzed using one-way and two-way ANOVA and Tukey's test (alpha = 0.05). The correlation between flexural strength and microhardness was evaluated with Pearson's correlation test (alpha = 0.05).Results: A significant effect for the type of IRC and thermocycling was found (p = 0.001, p = 0.001) on the flexural strength results, but thermocycling did not significantly affect the microhardness results (p = 0.078). The interaction factors were significant for both flexural strength and microhardness parameters (p = 0.001 and 0.002, respectively). Thermocycling decreased the flexural strength of the three IRCs tested significantly (p < 0.05), except for VITA Zeta (106.3 +/- 9.1 to 97.2 +/- 14 MPa) (p > 0.05) when compared with nonthermocycled groups. Microhardness results of only Sinfony were significantly affected by thermocycling (25.1 +/- 2.1 to 31 +/- 3.3 Kg/mm(2)). DC values ranged between 63% and 81%, and were not significantly different between the IRCs (p > 0.05). While a positive correlation was found between flexural strength and microhardness without (r = 0.309) and with thermocycling (r = 0.100) for VITA VMLC, negative correlations were found for Resilab under the same conditions (r = -0.190 and -0.305, respectively) (Pearson's correlation coefficient).Conclusion: Although all four IRCs presented nonsignificant DC values, flexural strength and microhardness values varied between materials with and without thermocycling.
Resumo:
The aim of this study was to assess the influence of manganese gluconate, a chemical activator of bleaching agents, at a concentration of 0.01% on the efficiency of a 10% carbamide peroxide-based bleaching agent. Forty bovine incisors were immersed in a 25% instant coffee solution for seven days and randomly divided into two groups. Group 1 was the control group and consisted of 10% carbamide peroxide-based bleaching gel only. Group 2 consisted of 10% carbamide peroxide-based bleaching gel and 0.01% manganese gluconate. Three readings of color were taken using the Vita Easy-shade spectrophotometer: the initial reading, a reading at seven days, and a reading at 14 days. Total color variation was calculated by Delta E*Lab. Data were submitted to the statistical t-test (5%), which showed that after seven days group 2 had a significant increase in the degree of tooth bleaching compared with group 1. The mean values (+/-SD) were 16.33 (+/-3.95) for group 1 and 19.29 (+/-4.97) for group 2. However, the results for group 1 and group 2 were similar after 14 days. Adding 0.01% manganese gluconate to 10% carbamide peroxide bleaching gel increased the degree of tooth bleaching after a seven-day treatment and did not influence the resulting shade after 14 days.
Resumo:
Anatase nanoparticles were obtained through a modified sol-gel route from titanium isopropoxide modified with acetic acid in order to control hydrolysis and condensation reactions. The modification of Ti(O(i)Pr)(4) with acetic acid reduces the availability of groups that hydrolyze and condense easily through the formation of a stable complex whose structure was determined to be Ti(OCOCH(3))(O(i)Pr)(2) by means of FTIR and (13)C NMR. The presence of this complex was confirmed with FTIR in the early stages of the process. A doublet in 1542 and 1440 cm(-1) stands for the asymmetric and symmetric stretching vibrations of the carboxylic group coordinated to Ti as a bidentate ligand. The gap of 102 cm(-1) between these signals suggests that acetate acts preferentially as a bidentate rather than as a bridging ligand between two titanium atoms. The use of acetic acid as modifier allows the control of both the degree of condensation and oligomerization of the precursor and leads to the preferential crystallization of TiO(2) in the anatase phase. A possible reaction pathway toward the formation of anatase is proposed on the basis of the intermediate species present in a 1:1 Ti(O(i)Pr)(4):CH(3)COOH molar system in which esterification reactions that introduce H(2)O into the reaction mixture were seen to be negligible. The Rietveld refinement and TEM analysis revealed that the powder is composed of isotropic anatase nanocrystallites.
Resumo:
The work describes the biocompatibility and biodegradation studies of anionic collagen membranes casted form collagen gels collagen, that were selective hydrolyzed at the carboxyamide groups, as a function of the degree of cross-links induced by glutaraldehyde. Independently from the degree of cross-links, all membranes studied were characterized by a similar inflammatory response, inversely dependent on glutaraldehyde reaction time, that decreased from the time of the implant. Cell alterations, mineralization or contact necrosis were not observed in any of the membranes studied. Rates for membrane tissue biodegradation were directly related to glutaraldehyde reaction time, and ranged from 30 to periods longer than 60 days, associated with good biocompatibility. Although other properties must be considered, their use in the treatment of periodontal diseases, the biological behavior observed with the 8 h GA cross-linked membrane suggests that, anionic collagen membrane described in this work may be of potential use, not only in association with guided tissue regeneration technique for periodontal tissue reconstruction, but also in other collagen biomaterial applications where controlled biodegradability is required. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
Flotation is a process of cell separation based on the affinity of cells to air bubbles. In the present work, flotability and hydrophobicity were determined using cells from different yeasts (Hansenulla polymorpha, Saccharomyces cerevisiae, Candida albicans), which were propagated in different media and at different temperatures. Alterations to the supernatant of the cells were also carried out before the flotation assays. The results described here indicate that supernatants of the yeast cells can play a more important role on flotation than cell-wall hydrophobicity. For example, wall-hydrophobicity of strain FLT-01 of S. cerevisiae was high but flotation did not occur when their washed cells were resuspended in water. Additions of neopeptone to cultures of S. cerevisiae and H. polymorpha repressed flotation and increased the volume of foam. An additional task of the present work was to show that the relationship between cell-wall hydrophobicity and flotation performance was dependent on the method used for the measurement of hydrophobicity. Based on the assay procedure, two types of hydrophobicity were distinguished: (a) the apparent hydrophobicity for cells suspended in the medium and expressed by the degree of cell affinity to the organic solvent in the two-phase system supernatant/hexane; (b) the standard hydrophobicity, which was determined for cells suspended in a standard solution (acetate buffer, in the present work) within the acetate buffer/hexane system. Flotation of cells of S. cerevisiae and C albicans were best related to the degree of apparent hydrophobicity (varying with the supernatant composition at the cell/medium interface) rather than to the degree of standard hydrophobicity (varying with the alterations in the wall components, since the liquid phase was constant in the assay). However, depending on the yeast unpredictable results can be obtained. For example, cells of H. polymorpha exhibited good flotation associated to a high degree of standard hydrophobicity while having a lower degree of apparent hydrophobicity. Concerning growth temperature, flotation of cells of C albicans was strongly repressed when the temperature was raised from 30 to 38 degreesC while a similar effect was not observed in cultures of S. cerevisiae and H. polymorpha. It is difficult to understand and predict flotation of yeast cells but simple modifications made to the supernatant of cultures can activate or repress flotation. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
We used dynamic light scattering (DLS), a steady-state fluorescence, time resolved fluorescence quenching (TRFQ), tensiometry, conductimetry, and isothermal titration calorimetry (ITC) to investigate the self-assembly of the cationic surfactant cetyltrimethylammonium sulfate (CTAS) in aqueous solution, which has SO42- as divalent counterion. We obtained the critical micelled concentration (cmc), aggregation number (N-agg), area per monomer (a(0)), hydrodynamic radius (R-H), and degree of counterion dissociation (alpha) of CTAS micelles in the absence and presence of up to 1 M Na2SO4 and at temperatures of 25 and 40 degrees C. Between 0.01 and 0.3 M salt the hydrodynamic radius of CTAS micelle R-H approximate to 16 angstrom is roughly independent on Na2SO4 concentration; below and above this concentration range R-H increases steeply with the salt concentration, indicating micelle structure transition, from spherical to rod-like structures. R-H increases only slightly as temperature increases from 25 to 40 degrees C, and the cmc decreases initially very steeply with Na2SO4 concentration up to about 10 mM, and thereafter it is constant. The area per surfactant at the water/air interface, a(0), initially increases steeply with Na2SO4 concentration, and then decrases above ca. 10 mM. Conductimetry gives alpha = 0.18 for the degree of counterion dissociation, and N-agg obtained by fluorescence methods increases with surfactant concentration but it is roughly independent of up to 80 mM salt. The ITC data yield cmc of 0.22 mM in water, and the calculated enthalpy change of micelle formation, Delta H-mic = 3.8 kJ mol(-1), Gibbs free energy of micellization of surfactant molecules, Delta G(mic) = -38.0 kJ mol(-1) and entropy T Delta S-mic = 41.7 kJ mol(-1) indicate that the formation of CTAS micelles is entropy-driven. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Methods of assessment of compost maturity are needed so the application of composted materials to lands will provide optimal benefits. The aim of the present paper is to assess the maturity reached by composts from domestic solid wastes (DSW) prepared under periodic and permanent aeration systems and sampled at different composting time, by means of excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR). EEM spectra indicated the presence of two different fluorophores centered, respectively, at Ex/Em wavelength pairs of 330/425 and 280/330 nm. The fluorescence intensities of these peaks were also analyzed, showing trends related to the maturity of composts. The contour density of EEM maps appeared to be strongly reduced with composting days. After 30 and 45 days of composting, FT-IR spectra exhibited a decrease of intensity of peaks assigned to polysaccharides and in the aliphatic region. EEM and FT-IR techniques seem to produce spectra that correlate with the degree of maturity of the compost. Further refinement of these techniques should provide a relatively rapid method of assessing the suitability of the compost to land application.
Resumo:
STUDY OBJECTIVE: To develop a new preoperative classification of submucous myomas for evaluating the viability and the degree of difficulty of hysteroscopic myomectomy.DESIGN: Retrospective study (Canadian Task Force classification II-3)SETTING: University teaching hospitals.PATIENTS: Fifty-five patients who underwent hysteroscopic resection of submucous myomas.INTERVENTION: the possibility of total resection of the myoma, the operating time, the fluid deficit, and the frequency of any complications were considered. The myomas were classified according to the Classification of the European Society for Gynaecological Endoscopy (ESGE) and by our group's new classification (NC), which considers not only the degree of penetration of the myoma into the myometrium, but also adds in such parameters as the distance of the base of the myoma from the uterine wall, the size of the nodule (cm), and the topography of the uterine cavity. The Fisher's exact test, the Student's t test, and the analysis of variance test were used in the statistical analysis. A p value less than .05 in the two-tailed test was considered significant.MEASUREMENTS AND MAIN RESULTS: In 57 myomas, hysteroscopic surgery was considered complete. There was no significant difference among the three ESGE levels (0, 1, and 2). Using the NC, the difference between the numbers of complete surgeries was significant (p < .001) for the two levels (groups I and H). The difference between the operating times was significant for the two classifications. With respect to the fluid deficit, only the NC showed significant differences between the levels (p = .02).CONCLUSIONS: We believe that the NC gives more clues as to the difficulties of a hysteroscopic myomectomy than the standard ESGE classification. It should be stressed that the number of hysteroscopic myomectomies used in this analysis was low, and it would be interesting to evaluate the performance of the classification in a larger number of patients. (c) 2005 AAGL. All rights reserved.
Resumo:
We study a new mechanism for the electromagnetic gauging of chiral bosons showing that new possibilities emerge for the interacting theory of chiral scalars. We introduce a chirally coupled gauge field necessary to mod out the degree of freedom that obstructs gauge invariance in a system of two opposite chiral bosons soldering them together.
Resumo:
Langmuir monolayers and Langmuir-Blodgett (LB) films have been produced from polyaniline and a biphosphinic ruthenium complex, referred to as Rupy. Strong, repulsive interaction between the two components led to a nonlinear change in area per molecule and surface potential with the concentration of Rupy in the mixed film. Molecular interaction was also denoted in the spectroscopic and electrochemical properties of the Y-type LB transferred films. The Raman spectra of mixed PANI-Rupy films indicated that the degree of oxidation of PANI increased linearly with the concentration of Ropy. With PANI being increasingly oxidized by presence of Rupy, the electroactivity of the mixed films decreased with the amount of Rupy, to become undetectable when the mixed LB film is 501 mol in Rupy. The presence of Rupy caused the electrical properties of the mixed LB films to be less sensitive to environmental changes. The electrical capacitance of a mixed film changed only by 15% when the sample was taken from vacuum to air, whereas the change was 215% for a pure PANI LB film.
Resumo:
The quality and the power of human activities affect the external environment in different ways that can be measured and evaluated by means of several approaches and indicators. While the scientific community has been publishing several proposals for sustainable development indicators, there is still no consensus regarding the best approach to the use of these indicators and their reliability to measure sustainability. It is important, therefore, to question the effectiveness of sustainable development indicators in an effort to continue in the search for sustainability. This paper compares the results obtained with emergy accounting with five global Sustainability Metrics (SMs) proposed in the literature to verify if metrics are communicating coherent and similar information to guide decision makers towards sustainable development. Results obtained using emergy indices are discussed with the aid of emergy ternary diagrams. Metrics are confronted with emergy results, and the degree of variability among them is analyzed using a correlation matrix created for the Mercosur nations. The contrast of results clearly shows that metrics arrive at different interpretations about the sustainability of the nations studied, but also that some metrics may be grouped and used more prudently. Mercosur is presented as a case study to highlight and explain the discrepancies and similarities among Sustainability Metrics, and to expose the extent of emergy accounting. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
70 human temporal bones were analyzed with the aid of an otologic microscope. The styloid prominence was found to be extremely variable in shape, location and occurrence. Depending on the degree of development, the prominence establishes important relationships with the sinus tympani, with the fossula of the cochlear fenestra, and with the suprapyramidal recess. Serial sections were used to study the relationship of the styloid process with the facial nerve inside the bony mass of the mastoid portion of the temporal bone.
Resumo:
Solubility and pH precipitation studies were carried out to obtain the binuclear complex {[TiO(C9H6NO)2][Sn(C9H6NO) 2]} involving 8-hydroxyquinoline as chelating agent. The compound, the individual mononuclear complexes and their physical mixture were evaluated by means of techniques such as TG, DTA, elemental analysis, X-ray diffraction, IR spectroscopy. The properties of the original compounds and also the thermoanalytical conditions exerted a great influence on the degree of crystallinity and on the crystalline phase of the mixed oxide obtained as final product of the thermal decomposition.
Resumo:
The reproducibility of measurements of alveolar bone loss on radiographs may be a problem on epidemiologic studies, as they are based on comparisons of the diagnosis of various examiners. The aim of the present research paper was to assess the inter- and intra-examiner reproducibility of measurements of the interproximal alveolar bone loss on non-manipulated digital radiographs and after the application of image filters. Five Oral Radiologists measured the distance between the cementoenamel junction (CEJ) to the alveolar crest or to the deepest point of the bony defect on 12 interproximal digital radiographs of molars and bicuspids of a dry human skull. The digital manipulation and the linear measurements were obtained with the Trophy Windows software (Throphy®). For each image, six different versions were created: 1) non-manipulated; 2) bright-contrast adjustment; 3) negative; 4) negative with brightness-contrast adjustment; 5) pseudo-colored; 6) pseudo-colored with brightness-contrast adjustment. In order to prevent interpretation bias because of the repetition of measurements, the examiners measured the radiographs in a random sequence. The two-way ANOVA test at 5% level of significance to compare the means of readings of the same operator with each filter indicated p<0.05 for the majority of operators, while the comparison between the mean values of operators using the same filter indicated p>0.05 for all filters. Based on the results, we concluded that linear measurements of interproximal alveolar bone loss on digital radiographs are highly reproducible among examiners. Nevertheless, the application of image filters significantly influenced the degree of intra-examiner reproducibility. Some filters even reduced the reproducibility of intra-examiner readings.
Resumo:
The effect of post-polymerization treatments (MW-microwave irradiatron and WB-water-bath) on the degree of conversion (DC) of three reline resins (Ufi Gel hard-U, Kooliner-K, and Tokuso Rebase Fast-T) and one denture base resin (Lucitone 550-L), submitted to two polymerization cycles (LS-short and LL-long), was evaluated by using FT-Raman spectroscopy (n = 5). The molecular weight (Mw) of the powder of all materials and of K polymerized specimens (control; MW; and WB; n = 3) was analyzed using GPC. DC data were analyzed using Kruskal-Wallis test (α = .05). For control specimens, there were no significant differences between U (68%) and LL (77%) and among LL, K (81%), and T (84%). LS (92%) had the highest DC (P<0.05). Only material K exhibited an increased DC after WB (P<0.05). All powders had Mw from 4.0 × 105 to 6.5 × 105 and narrow Mw distributions (2.1 to 3.6). Polymerization and post-polymerization produced K specimens with Mw similar to that of K powder.