866 resultados para the arousal theory
Resumo:
Fermi gases with generalized Rashba spin-orbit coupling induced by a synthetic gauge field have the potential of realizing many interesting states, such as rashbon condensates and topological phases. Here, we address the key open problem of the fluctuation theory of such systems and demonstrate that beyond-Gaussian effects are essential to capture the finite temperature physics of such systems. We obtain their phase diagram by constructing an approximate non-Gaussian theory. We conclusively establish that spin-orbit coupling can enhance the exponentially small transition temperature (T-c) of a weakly attracting superfluid to the order of the Fermi temperature, paving a pathway towards high T-c superfluids.
Resumo:
The rare occurrence of intramolecular hydrogen bonds (HBs) of the type N-H center dot center dot center dot F-C is detected in the derivatives of imides in a low polarity solvent by using multi-dimensional and multinuclear NMR experiments. The observation of (1h)J(FH), (2h)J(FN), and (2h)J(FF), where the spin magnetization is transmitted through space among the interacting NMR active nuclei, provided strong and unambiguous evidence for the existence of intra-molecular HBs. The variation in the chemical shifts of labile protons depending on physical conditions, such as the solvent dilution and the systematic alteration of temperature confirmed the presence of weak interactions through intramolecular HBs in all the investigated fluorine substituted molecules. The self or cross dimerization of molecules is unequivocally discarded by the analysis of the rates of diffusion obtained using pseudo-two dimensional DOSY experiments. The Density Function Theory (DFT) calculations based on the Quantum Theory of Atoms In Molecules (QTAIM) and Non Covalent Interaction (NCI), are in close agreement with the NMR experimental findings.
Resumo:
A comparative study of field-induced domain switching and lattice strain was carried out by in situ electric-field-dependent high-energy synchrotron x-ray diffraction on a morphotropic phase boundary (MPB) and a near-MPB rhombohedral/pseudomonoclinic composition of a high-performance piezoelectric alloy (1-x) PbTiO3-(x)BiScO3. It is demonstrated that the MPB composition showing large d(33) similar to 425 pC/N exhibits significantly reduced propensity of field-induced domain switching as compared to the non-MPB rhombohedral composition (d(33) similar to 260 pC/N). These experimental observations contradict the basic premise of the martensitic-theory-based explanation which emphasizes on enhanced domain wall motion as the primary factor for the anomalous piezoelectric response in MPB piezoelectrics. Our results favor field-induced structural transformation to be the primary mechanism contributing to the large piezoresponse of the critical MPB composition of this system.
Resumo:
A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.
Resumo:
For brittle solids containing numerous small cracks, a micromechanical damage theory is presented which accounts for the interactions between different small cracks and the effect of the boundary of a finite solid, and includes growth of the pre-existing small cracks. The analysis is based on a superposition scheme and series expansions of the complex potentials. The small crack evolution process is simulated through the use of fracture mechanics incorporating appropriate failure criteria. The stress-strain relations are obtained from the micromechanics analysis. Typical examples are given to illustrate the potential capability of the proposed theory. These results show that the present method provides a direct and efficient approach to deal with brittle finite solids containing multiple small cracks. The stress-strain relation curves are evaluated for a rectangular plate containing small cracks.
Resumo:
The theory of the loading/unloading response ratio (LURR) was applied to the Jiashi earthquake sequence which occurred at the beginning of 1997 in Xinjiang, and found that, before the earthquakes with relatively high magnitudes In the sequence, the ratio showed anomalies of high values. That is to say, the LURR theory can be applied to the short-term earthquake prediction in some cases, especially in the early period after a strong earthquake, such as the forecasts for some strong earthquakes in the Jiashi sequence.
Resumo:
A new phenomenological deformation theory with strain gradient effects is proposed. This theory, which belongs to nonlinear elasticity, fits within the framework of general couple stress theory and involves a single material length scale l. In the present theory three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom u(i). omega(i) has no direct dependence upon ui and is called the micro-rotation, i.e. the material rotation theta(i) plus the particle relative rotation. The strain energy density is assumed to only be a function of the strain tensor and the overall curvature tensor, which results in symmetric Cauchy stresses. Minimum potential principle is developed for the strain gradient deformation theory version. In the limit of vanishing 1, it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in details. Comparisons between the present theory and the theory proposed by Shizawa and Zbib (Shizawa, K., Zbib, H.M., 1999. A thermodynamical theory gradient elastoplasticity with dislocation density Censor: fundamentals. Int. J. Plast. 15, 899) are given. With the same hardening law as Fleck et al. (Fleck, N.A., Muller, G.H., Ashby, M.F., Hutchinson, JW., 1994 Strain gradient plasticity: theory and experiment. Acta Metall. Mater 42, 475), the new strain gradient deformation theory is used to investigate two typical examples, i.e. thin metallic wire torsion and ultra-thin metallic beam bend. The results are compared with those given by Fleck et al, 1994 and Stolken and Evans (Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109). In addition, it is explained for a unit cell that the overall curvature tensor produced by the overall rotation vector is the work conjugate of the overall couple stress tensor. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The influences of I,article size on the mechanical properties of the particulate metal matrix composite;are obviously displayed in the experimental observations. However, the phenomenon can not be predicted directly using the conventional elastic-plastic theory. It is because that no length scale parameters are involved in the conventional theory. In the present research, using the strain gradient plasticity theory, a systematic research of the particle size effect in the particulate metal matrix composite is carried out. The roles of many composite factors, such as: the particle size, the Young's modulus of the particle, the particle aspect ratio and volume fraction, as well as the plastic strain hardening exponent of the matrix material, are studied in detail. In order to obtain a general understanding for the composite behavior, two kinds of particle shapes, ellipsoid and cylinder, are considered to check the strength dependence of the smooth or non-smooth particle surface. Finally, the prediction results will be applied to the several experiments about the ceramic particle-reinforced metal-matrix composites. The material length scale parameter is predicted.
Resumo:
Casimir effect on the critical pull-in gap and pull-in voltage of nanoelectromechanical switches is studied. An approximate analytical expression of the critical pull-in gap with Casimir force is presented by the perturbation theory. The corresponding pull-in parameters are computed numerically, from which one can notice the nonlinear effect of Casimir force on the pull-in parameters. The detachment length has been presented, which increases with increasing thickness of the beam.
Resumo:
Self-assembly processes resulting in linear structures are often observed in molecular biology, and include the formation of functional filaments such as actin and tubulin, as well as generally dysfunctional ones such as amyloid aggregates. Although the basic kinetic equations describing these phenomena are well-established, it has proved to be challenging, due to their non-linear nature, to derive solutions to these equations except for special cases. The availability of general analytical solutions provides a route for determining the rates of molecular level processes from the analysis of macroscopic experimental measurements of the growth kinetics, in addition to the phenomenological parameters, such as lag times and maximal growth rates that are already obtainable from standard fitting procedures. We describe here an analytical approach based on fixed-point analysis, which provides self-consistent solutions for the growth of filamentous structures that can, in addition to elongation, undergo internal fracturing and monomer-dependent nucleation as mechanisms for generating new free ends acting as growth sites. Our results generalise the analytical expression for sigmoidal growth kinetics from the Oosawa theory for nucleated polymerisation to the case of fragmenting filaments. We determine the corresponding growth laws in closed form and derive from first principles a number of relationships which have been empirically established for the kinetics of the self-assembly of amyloid fibrils.
Resumo:
Non-equilibrium molecular dynamics (NEMD) simulations are performed to calculate thermal conductivity. The environment-dependent interatomic potential (EDIP) potential on crystal silicon is adopted as a model system. The issues are related to nonlinear response, local thermal equilibrium and statistical averaging. The simulation results by non-equilibrium molecular dynamics show that the calculated thermal conductivity decreases almost linearly as the film thickness reduced at the nanometre scale. The effect of size on the thermal conductivity is also obtained by a theoretic analysis of the kinetic theory and formulas of the heat capacity. The analysis reveals that the contributions of phonon mean free path (MFP) and phonon number in a finite cell to thermal conductivity are very important.
Resumo:
The motion of a single spherical small bubble due to buoyancy in the ideal fluid with waves is investigated theoretically and experimentally in this article. Assuming that the bubble has no effect on the wave field, equations of a bubble motion are obtained and solved. It is found that the nonlinear effect increases with the increase of the bubble radius and the rising time. The rising time and the motion orbit are given by calculations and experiments. When the radius of a bubble is smaller than 0.5mm and the distance from the free surface is greater than the wave height, the results of the present theory are in close agreement with measurements.
Resumo:
The pure diffusion process has been often used to study the crystal growth of a binary alloy in the microgravity environment. In the present paper, a geometric parameter, the ratio of the maximum deviation distance of curved solidification and melting interfaces from the plane to the radius of the crystal rod, was adopted as a small parameter, and the analytical solution was obtained based on the perturbation theory. The radial segregation of a diffusion dominated process was obtained for cases of arbitrary Peclet number in a region of finite extension with both a curved solidification interface and a curved melting interface. Two types of boundary conditions at the melting interface were analyzed. Some special cases such as infinite extension in the longitudinal direction and special range of Peclet number were reduced from the general solution and discussed in detail.
Resumo:
A new high-order refined shear deformation theory based on Reissner's mixed variational principle in conjunction with the state- space concept is used to determine the deflections and stresses for rectangular cross-ply composite plates. A zig-zag shaped function and Legendre polynomials are introduced to approximate the in-plane displacement distributions across the plate thickness. Numerical results are presented with different edge conditions, aspect ratios, lamination schemes and loadings. A comparison with the exact solutions obtained by Pagano and the results by Khdeir indicates that the present theory accurately estimates the in-plane responses.
Resumo:
The results of experiments in open channels and closed pipelines show two kinds of patterns for the vertical distribution of particle concentration (i.e., pattern I and pattern II). The former shows a pattern of maximum concentration at some location above the bottom and the downward decay of the concentration below the location. The latter always shows an increase of the particle concentration downward over the whole vertical, with the maximum value at the bottom. Many investigations were made on the pattern II, but few were made on pattern I. In this paper, a particle velocity distribution function is first obtained in the equilibrium state or in dilute steady state for the particle in two-phase flows, then a theoretical model for the particle concentration distribution is derived from the kinetic theory. More attention is paid to the predictions of the concentration distribution of pattern I and comparisons of the present model are made with the data measured by means of laser doppler anemometry (LDA). Very good agreements are obtained between the measured and calculated results.