482 resultados para tRNA(Lys3)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unterschiedlich substituierte Reagenzien, basierend auf dem Cumarin Körper, wurden untersucht und Struktur-Funktions-Beziehungsstudien zeigten eine Selektivität für ein natürlich vorkommendes, modifiziertes Nukleosid, 4-Thiouridine (s4U). Im Verlauf dieser Experimente, fiel ein multifunktionales Cumarin, namens PBC, aus mehreren Gründen auf. Neben seiner 2000 fachen Selektivität für s4U gegenüber Uridin, besitzt PBC ein zusätzliches terminales Alkin für Konjugationsreaktionen mit Aziden. Es wurde zusätzlich zur Fluoreszenzmarkierung von small interfering RNA benutzt, deren Fluoreszenz in Zellen beobachtet werden konnte. Mit PBC kommt ein neues chemisches Reagenz zur Detektion von modifizierten Nukleosiden zum bereits vorhandenen Repertoire hinzu.rnDiese Arbeit zeigt zusätzlich eine neue Labelingstrategie, basierend auf einem kleinen, multifunktionalen chemischen Reagenz, welches spezifisch mit Uridinen in RNA reagiert. Dieses Cumarin-basierte Reagenz, namens N3BC, hat den Vorteil (I) post-transkriptionell gegenüber allen möglichen RNAs einsetzbar zu sein, (II) Fluoreszenz zu zeigen und (III) eine weitere funktionelle Gruppe zu besitzen, die in Biokonjugationsreaktionen einsetzbar ist. Die letzteren umfassen z.B. die durch UV ausgelösten crosslinking Experimente mit verwandten Proteinen, sowie die bioorthognale CuAAC Reaktion mit fluoreszenten Alkin-Farbstoffen.rnFür verlässliche Detektion wurden mehrere LC-MS/MS Methoden, zur Identifizierung und Quantifizierung von bis zu 21 Ribonukleosiden und 5 Deoxyribonukleosiden in einem Einzellauf, entwickelt. Zusätzlich wurden diese Methoden in mehreren Studien, hauptsächlich von Methyltransferasen, angewandt. rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a sporadic case of chronic progressive external ophthalmoplegia associated with ragged red fibers. The patient presented with enlarged mitochondria with deranged internal architecture and crystalline inclusions. Biochemical studies showed reduced activities of complex I, III and IV in skeletal muscle. Molecular genetic analysis of all mitochondrial tRNAs revealed a G to A transition at nt 4308; the G is a highly conserved nucleotide that participates in a GC base-pair in the T-stem of mammalian mitochondrial tRNA(Ile). The mutation was detected at a high level (approx. 50%) in muscle but not in blood. The mutation co-segregated with the phenotype, as the mutation was absent from blood and muscle in the patient's healthy mother. Functional characterization of the mutation revealed a six-fold reduced rate of tRNA(Ile) precursor 3' end maturation in vitro by tRNAse Z. Furthermore, the mutated tRNA(Ile) displays local structural differences from wild-type. These results suggest that structural perturbations reduce efficiency of tRNA(Ile) precursor 3' end processing and contribute to the molecular pathomechanism of this mutation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measuring antibiotic-induced killing relies on time-consuming biological tests. The firefly luciferase gene (luc) was successfully used as a reporter gene to assess antibiotic efficacy rapidly in slow-growing Mycobacterium tuberculosis. We tested whether luc expression could also provide a rapid evaluation of bactericidal drugs in Streptococcus gordonii. The suicide vectors pFW5luc and a modified version of pJDC9 carrying a promoterless luc gene were used to construct transcriptional-fusion mutants. One mutant susceptible to penicillin-induced killing (LMI2) and three penicillin-tolerant derivatives (LMI103, LMI104, and LMI105) producing luciferase under independent streptococcal promoters were tested. The correlation between antibiotic-induced killing and luminescence was determined with mechanistically unrelated drugs. Chloramphenicol (20 times the MIC) inhibited bacterial growth. In parallel, luciferase stopped increasing and remained stable, as determined by luminescence and Western blots. Ciprofloxacin (200 times the MIC) rapidly killed 1.5 log10 CFU/ml in 2-4 hr. Luminescence decreased simultaneously by 10-fold. In contrast, penicillin (200 times the MIC) gave discordant results. Although killing was slow (< or = 0.5 log10 CFU/ml in 2 hr), luminescence dropped abruptly by 50-100-times in the same time. Inactivating penicillin with penicillinase restored luminescence, irrespective of viable counts. This was not due to altered luciferase expression or stability, suggesting some kind of post-translational modification. Luciferase shares homology with aminoacyl-tRNA synthetase and acyl-CoA ligase, which might be regulated by macromolecule synthesis and hence affected in penicillin-inhibited cells. Because of resemblance, luciferase might be down-regulated simultaneously. Luminescence cannot be universally used to predict antibiotic-induced killing. Thus, introducing reporter enzymes sharing mechanistic similarities with normal metabolic reactions might reveal other effects than those expected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymyositis and interstitial lung diseases, predominantly nonspecific interstitial pneumonia (NSIP), are known to be frequent in antisynthetase syndrome, where anti-aminoacyl-tRNA synthetase antibodies are often identified. An unusual case of acute respiratory distress syndrome, secondary to such proven NSIP of cellular type with predominant CD8 lymphocytes, is described herein. The patient described in the present case study initially had a poor recovery with high dose of steroids, but this was followed by a good improvement after the prescription of tacrolimus and a low dose of prednisone. A precise diagnosis in similar circumstances may be life-saving, allowing the successful application of new immunosuppressants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All mitochondria have integral outer membrane proteins with beta-barrel structures including the conserved metabolite transporter VDAC (voltage dependent anion channel) and the conserved protein import channel Tom40. Bioinformatic searches of the Trypanosoma brucei genome for either VDAC or Tom40 identified a single open reading frame, with sequence analysis suggesting that VDACs and Tom40s are ancestrally related and should be grouped into the same protein family: the mitochondrial porins. The single T. brucei mitochondrial porin is essential only under growth conditions that depend on oxidative phosphorylation. Mitochondria isolated from homozygous knockout cells did not produce adenosine-triphosphate (ATP) in response to added substrates, but ATP production was restored by physical disruption of the outer membrane. These results demonstrate that the mitochondrial porin identified in T. brucei is the main metabolite channel in the outer membrane and therefore the functional orthologue of VDAC. No distinct Tom40 was identified in T. brucei. In addition to mitochondrial proteins, T. brucei imports all mitochondrial tRNAs from the cytosol. Isolated mitochondria from the VDAC knockout cells import tRNA as efficiently as wild-type. Thus, unlike the scenario in plants, VDAC is not required for mitochondrial tRNA import in T. brucei.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Leukoencephalomyelopathy is an inherited neurodegenerative disorder that affects the white matter of the spinal cord and brain and is known to occur in the Rottweiler breed. Due to the lack of a genetic test for this disorder, post mortem neuropathological examinations are required to confirm the diagnosis. Leukoencephalopathy with brain stem and spinal cord involvement and elevated lactate levels is a rare, autosomal recessive disorder in humans that was recently described to have clinical features and magnetic resonance imaging (MRI) findings that are similar to the histopathologic lesions that define leukoencephalomyelopathy in Rottweilers. Leukoencephalopathy with brain stem and spinal cord involvement is caused by mutations in the DARS2 gene, which encodes a mitochondrial aspartyl-tRNA synthetase. The objective of this case report is to present the results of MRI and candidate gene analysis of a case of Rottweiler leukoencephalomyelopathy to investigate the hypothesis that leukoencephalomyelopathy in Rottweilers could serve as an animal model of human leukoencephalopathy with brain stem and spinal cord involvement. CASE PRESENTATION A two-and-a-half-year-old male purebred Rottweiler was evaluated for generalised progressive ataxia with hypermetria that was most evident in the thoracic limbs. MRI (T2-weighted) demonstrated well-circumscribed hyperintense signals within both lateral funiculi that extended from the level of the first to the sixth cervical vertebral body. A neurodegenerative disorder was suspected based on the progressive clinical course and MRI findings, and Rottweiler leukoencephalomyelopathy was subsequently confirmed via histopathology. The DARS2 gene was investigated as a causative candidate, but a sequence analysis failed to identify any disease-associated variants in the DNA sequence. CONCLUSION It was concluded that MRI may aid in the pre-mortem diagnosis of suspected cases of leukoencephalomyelopathy. Genes other than DARS2 may be involved in Rottweiler leukoencephalomyelopathy and may also be relevant in human leukoencephalopathy with brain stem and spinal cord involvement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The shuttle vector plasmid pZ189 was used to find the kinds of mutations that are induced by herpes simplex virus type-1 (HSV-1). In cells infected by HSV-1 the frequency of mutation in supF gene, the mutagenesis marker, was increased over background by from two- to seven-fold, reaching 0.14-0.45%. No increase was induced by infection by vaccinia virus under the same conditions. Mutagenesis was an early event, showing a four-fold increase in mutation frequency at only two hours after infection, and peaking at a seven-fold increase at four hours after infection. DNA sequencing and gel electrophoresis analysis were performed on 105 HSV-1 induced mutants and 65 spontaneous mutants and provided the following information: (1) A change in plasmid size was seen in 54% of HSV-1 related mutants, compared with only 37% of spontaneous mutants. (2) Among point mutations, the predominant type was G:C to A:T transition, which accounted for 51% of point mutations in mutants isolated from cells infected with HSV-1, and 32% of point mutations in spontaneous mutants. (3) Deletions of DNA were seen in HSV-1 related mutants at a frequency of 40%, compared with 29% in spontaneous mutants. The HSV-1 related deletions were about half the length of spontaneous mutants and three contained short filler sequences. (4) Fifteen (15%) of HSV-1 induced mutants revealed the altered restriction patterns on agarose gel electrophoresis analysis and were due either to rearrangements of plasmid DNA, and/or to insertion of sequences derived from chromosomal DNA (seven plasmids). No insertions of DNA from HSV-1 were detected. Among spontaneous mutants, only 5 (7.7%) were rearrangements and none had inserted chromosomal DNA. (5) DNA sequence analysis of seven plasmids with inserted chromosomal DNA revealed that four cases had repetitive DNA sequences integrated and the other three were unidentified sequences from the GenBank database. Three repetitive DNA included $\alpha$ satellite, Alu and KpnI family sequences. The other sequence was identified as tRNA-like component. The observed mutations have implications for the mechanism of malignant transformation of cells by HSV-1. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two regions in the 3$\prime$ domain of 16S rRNA (the RNA of the small ribosomal subunit) have been implicated in decoding of termination codons. Using segment-directed PCR random mutagenesis, I isolated 33 translational suppressor mutations in the 3$\prime$ domain of 16S rRNA. Characterization of the mutations by both genetic and biochemical methods indicated that some of the mutations are defective in UGA-specific peptide chain termination and that others may be defective in peptide chain termination at all termination codons. The studies of the mutations at an internal loop in the non-conserved region of helix 44 also indicated that this structure, in a non-conserved region of 16S rRNA, is involved in both peptide chain termination and assembly of 16S rRNA.^ With a suppressible trpA UAG nonsense mutation, a spontaneously arising translational suppressor mutation was isolated in the rrnB operon cloned into a pBR322-derived plasmid. The mutation caused suppression of UAG at two codon positions in trpA but did not suppress UAA or UGA mutations at the same trpA positions. The specificity of the rRNA suppressor mutation suggests that it may cause a defect in UAG-specific peptide chain termination. The mutation is a single nucleotide deletion (G2484$\Delta$) in helix 89 of 23S rRNA (the large RNA of the large ribosomal subunit). The result indicates a functional interaction between two regions of 23S rRNA. Furthermore, it provides suggestive in vivo evidence for the involvement of the peptidyl-transferase center of 23S rRNA in peptide chain termination. The $\Delta$2484 and A1093/$\Delta$2484 (double) mutations were also observed to alter the decoding specificity of the suppressor tRNA lysT(U70), which has a mutation in its acceptor stem. That result suggests that there is an interaction between the stem-loop region of helix 89 of 23S rRNA and the acceptor stem of tRNA during decoding and that the interaction is important for the decoding specificity of tRNA.^ Using gene manipulation procedures, I have constructed a new expression vector to express and purify the cellular protein factors required for a recently developed, realistic in vitro termination assay. The gene for each protein was cloned into the newly constructed vector in such a way that expression yielded a protein with an N-terminal affinity tag, for specific, rapid purification. The amino terminus was engineered so that, after purification, the unwanted N-terminal tag can be completely removed from the protein by thrombin cleavage, yielding a natural amino acid sequence for each protein. I have cloned the genes for EF-G and all three release factors into this new expression vector and the genes for all the other protein factors into a pCAL-n expression vector. These constructs will allow our laboratory group to quickly and inexpensively purify all the protein factors needed for the new in vitro termination assay. (Abstract shortened by UMI.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ribosome is a molecular machine that produces proteins in a cell. It consists of RNAs (rRNAs) and proteins. The rRNAs have been implicated in various aspects of protein biosynthesis supporting the idea that they function directly in translation. In this study the direct involvement of rRNA in translation termination was hypothesized and both genetic and biochemical strategies were designed to test this hypothesis. As a result, several regions of rRNAs from both ribosomal subunits were implicated in termination. More specifically, the mutation G1093A in an RNA of the large subunit (23S rRNA) and the mutation C1054A in the small subunit RNA (16S rRNA) of the Escherichia coli ribosome, were shown to affect the binding of the proteins that drive termination, RF1 and RF2. These mutations also caused defects in catalysis of peptidyl-tRNA hydrolysis, the last step of termination. Furthermore, the mutations affected the function of RF2 to a greater extent than that of RF1, a striking result considering the similarity of the RFs. The major defect in RF2 function was consistent with in vivo characteristics of the mutants and can be explained by the inability of the mutant rRNA sites to activate the hydrolytic center, that is the catalytic site for peptidyl-tRNA hydrolysis. Consistent with this explanation is the possibility of a direct interaction between the G1093-region (domain II of 23S rRNA) and the hydrolytic center (most likely domains IV–VI of 23S rRNA). To test that interaction hypothesis selections were performed for mutations in domains IV–VI that compensated for the growth defects caused by G1093A. Several compensatory mutations were isolated which not only restored growth in the presence of G1093A but also appeared to compensate for the termination defects caused by the G1093A. Therefore these results provided genetic evidence for an intramolecular interaction that might lead to peptidyl-tRNA hydrolysis. Finally, a new approach to the study of rRNA involvement in termination was designed. By screening a library of rRNA fragments, a fragment of the 23S rRNA (nt 74-136) was identified that caused readthrough of UGA. The antisense RNA fragment produced a similar effect. The data implicated the corresponding segment of intact 23S rRNA in termination. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and functional repertoire of small non-protein-coding RNAs (ncRNAs) is central for establishing gene regulation networks in cells and organisms. Here, we show that an mRNA-derived 18-nucleotide-long ncRNA is capable of downregulating translation in Saccharomyces cerevisiae by targeting the ribosome. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth under hyperosmotic conditions. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence, rather than the mRNA-encoded enzyme, as the translation regulator. Our data reveal the ribosome as a target for a small regulatory ncRNA and demonstrate the existence of a yet unkown mechanism of translation regulation. Ribosome-targeted small ncRNAs are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The budding yeast multi-K homology domain RNA-binding protein Scp160p binds to > 1000 messenger RNAs (mRNAs) and polyribosomes, and its mammalian homolog vigilin binds transfer RNAs (tRNAs) and translation elongation factor EF1alpha. Despite its implication in translation, studies on Scp160p's molecular function are lacking to date. We applied translational profiling approaches and demonstrate that the association of a specific subset of mRNAs with ribosomes or heavy polysomes depends on Scp160p. Interaction of Scp160p with these mRNAs requires the conserved K homology domains 13 and 14. Transfer RNA pairing index analysis of Scp160p target mRNAs indicates a high degree of consecutive use of iso-decoding codons. As shown for one target mRNA encoding the glycoprotein Pry3p, Scp160p depletion results in translational downregulation but increased association with polysomes, suggesting that it is required for efficient translation elongation. Depletion of Scp160p also decreased the relative abundance of ribosome-associated tRNAs whose codons show low potential for autocorrelation on mRNAs. Conversely, tRNAs with highly autocorrelated codons in mRNAs are less impaired. Our data indicate that Scp160p might increase the efficiency of tRNA recharge, or prevent diffusion of discharged tRNAs, both of which were also proposed to be the likely basis for the translational fitness effect of tRNA pairing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. Furthermore it is strongly assumed that the primordial translation system in the ‘RNA world’ most likely received direct regulatory input from ncRNA-like cofactors. The fundamental question that we would like to ask is: Does the ‘RNA world still communicate’ with the ribosome? To address this question, we have analyzed the small ncRNA interactomes of ribosomes of prokaryotic (H. volcanii, S. aureus) and unicellular eukaryotic model organisms. Deep-sequencing and subsequent bioinformatic analyses revealed thousands of putative ribosome-associated ncRNAs. For a subset of these ncRNA candidates we have gathered experimental evidence that they are expressed in a stress-dependent manner and indeed directly target the ribosome. In the archaeon H. volcanii a tRNA-derived fragment was identified to target the small ribosomal subunit upon alkaline stress in vitro and in vivo. As a consequence of ribosome binding, this tRNA-fragment reduces protein synthesis by interfering with the peptidyl transferase activity. Our data reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory sRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small non-protein-coding RNA (ncRNA) molecules have been recognized recently as major contributors to regulatory networks in controlling gene expression in a highly efficient manner. While the list of validated ncRNAs that regulate crucial cellular processes grows steadily, not a single ncRNA has been identified that directly interacts and regulates the ribosome during protein biosynthesis (with the notable exceptions of 7SL RNA and tmRNA). All of the recently discovered regulatory ncRNAs that act on translation (e.g. microRNAs, siRNAs or antisense RNAs) target the mRNA rather than the ribosome. This is unexpected, given the central position the ribosome plays during gene expression. To investigate whether such a class of regulatory ncRNAs does exist we performed genomic screens for small ribosome-associated RNAs in various model organisms of all three domains [1,2]. Here we focus on the functional characterisation of an 18 nucleotide long ncRNA candidate derived from an open reading frame (ORF) of an annotated S. cerevisiae gene, which encodes a tRNA methyltransferase. Yeast cells lacking this tRNA methyltransferase showed clear growth defects in high salt containing media. Genetic analysis showed that the absence of the mRNA-derived ncRNA rather than the absence of the tRNA methyltransferase activity is responsible for the observed phenotype. Since we performed a screen for small ribosome-associated RNAs we examined the regulatory potential of the synthetic 18mer during translation in vitro and in vivo. Metabolic labeling experiments in the presence of the synthetic 18mer RNA revealed an inhibitory potential on the global protein biosynthesis rate. In vitro translation and northern blot analysis further strengthen the hypothesis, that this RNA is a ribosome-associated regulatory ncRNA. Our studies in pro- and eukaryotic model organisms reveal the ribosome as a novel target for small regulatory ncRNAs in all domains of life. Ribosome-bound ncRNAs are capable of fine tuning translation and might represent a so far largely unexplored class of regulatory ncRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functions of ribosomes in translation are complex and involve different types of activities critical for decoding the genetic code, linkage of amino acids via amide bonds to form polypeptide chains, as well as the release and proper targeting of the synthesized protein. Non-protein-coding RNAs (ncRNAs) have been recognized to be crucial in establishing regulatory networks.1 However all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. The main goal of this project is to identify potential novel ncRNAs that directly bind and possibly regulate the ribosome during protein biosynthesis. To address this question we applied various stress conditions to the archaeal model organism Haloferax volcanii and deep-sequenced the ribosome-associated small ncRNA interactome. In total we identified 6.250 ncRNA candidates. Significantly, we observed the emersed presence of tRNA-derived fragments (tRFs). These tRFs have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNAs. Here we present evidence that tRFs from H. volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome a 26 residue long fragment originating from the 5’ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production.2 Currently we are investigating the binding site of this tRF on the 30S subunit in more detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mitochondrial outer membrane (MOM) separates the mitochondria from the cytoplasm, serving both as a barrier and as a gateway. Protein complexes — believed to be universally conserved in all eukaryotes — reside in the MOM to orchestrate and control metabolite exchange, lipid metabolism and uptake of biopolymers such as protein and RNA. African trypanosomes are the causative agent of the sleeping sickness in humans. The parasites are among the earliest diverging eukaryotes that have bona fide mitochondria capable of oxidative phosphorylation. Trypanosomes have unique mitochondrial biology that concerns their mitochondrial metabolism and their unusual mitochondrial morphology that differs to great extent between life stages. Another striking feature is the organization of the mitochondrial genome that does not encode any tRNA genes, thus all tRNAs needed for mitochondrial translation have to be imported. However, the MOM of T. brucei is essentially unchartered territory. It lacks a canonical protein import machinery and facilitation of tRNA translocation remains completely elusive. Using biochemical fractionation and label-free quantitative mass spectrometry for correlated protein abundance-profiling we were able to identify a cluster of 82 candidate proteins that can be localized to the trypanosomal MOM with high confidence. This enabled us to identify a highly unusual, potentially archaic protein import machinery that might also transport tRNAs. Moreover, two-thirds of the identified polypeptides present on the MOM have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the MOM of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of insect-stage parasites and therefore directly or indirectly are involved in the regulation of mitochondrial morphology.