961 resultados para surface modeling
Resumo:
This work presents the development and application of a three-dimensional oil spill model for predicting the movement of an oil slick in the coastal waters of Singapore. In the model, the oil slick is divided into a number of small elements for simulating of the oil processes of spreading, advection, turbulent diffusion. This model is capable of predicting the horizontal movement of surface oil slick. Satellite images and field observations of oil slicks on the surface in the Singapore Straits are used to validate the newly developed model. Compared with the observations, the numerical results of the oil spill model show good conformity. In this study, the 3d model was generated using the geometrical data of Singapore Straits waters by GAMBIT which is a pre-processor of FLUENT programmed.
Resumo:
Secondary microseism sources are pressure fluctuations close to the ocean surface. They generate acoustic P-waves that propagate in water down to the ocean bottom where they are partly reflected, and partly transmitted into the crust to continue their propagation through the Earth. We present the theory for computing the displacement power spectral density of secondary microseism P-waves recorded by receivers in the far field. In the frequency domain, the P-wave displacement can be modeled as the product of (1) the pressure source, (2) the source site effect that accounts for the constructive interference of multiply reflected P-waves in the ocean, (3) the propagation from the ocean bottom to the stations, (4) the receiver site effect. Secondary microseism P-waves have weak amplitudes, but they can be investigated by beamforming analysis. We validate our approach by analyzing the seismic signals generated by Typhoon Ioke (2006) and recorded by the Southern California Seismic Network. Back projecting the beam onto the ocean surface enables to follow the source motion. The observed beam centroid is in the vicinity of the pressure source derived from the ocean wave model WAVEWATCH IIIR. The pressure source is then used for modeling the beam and a good agreement is obtained between measured and modeled beam amplitude variation over time. This modeling approach can be used to invert P-wave noise data and retrieve the source intensity and lateral extent.
Resumo:
Numerous ecological problems of continental shelf ecosystems require a refined knowledge of the evolution of suspended sediment concentrations (SSC). The present investigation focuses on the spatial and temporal variabilities of near-surface SSC in coastal waters of the English Channel (western Europe) by exploiting numerical predictions from the Regional Ocean Modeling System ROMS. Extending previous investigations of ROMS performances in the Channel, this analysis refines, with increased spatial and temporal resolutions, the characterization of near-surface SSC patterns revealing areas where concentrations are highly correlated with evolutions of tides and waves. Significant tidal modulations of near-surface concentrations are thus found in the eastern English Channel and the French Dover Strait while a pronounced influence of waves is exhibited in the Channel Islands Gulf. Coastal waters present furthermore strong SSC temporal variations, particularly noticeable during storm events of autumn and winter, with maximum near-surface concentrations exceeding 40 mg l−1 and increase by a factor from 10 to 18 in comparison with time-averaged concentrations. This temporal variability strongly depends on the granulometric distribution of suspended sediments characterized by local bi-modal contributions of silts and sands off coastal irregularities of the Isle of Wight, the Cotentin Peninsula and the southern Dover Strait.
Resumo:
The remediation of paracetamol (PA), an emerging contaminant frequently found in wastewater treatment plants, has been studied in the low concentration range (0.3–10 mg L−1) using as adsorbent a biomass-derived activated carbon. PA uptake of up to 100 mg g−1 over the activated carbon has been obtained, with the adsorption isotherms being fairly explained by the Langmuir model. The application of Reichemberg and the Vermeulen equations to the batch kinetics experiments allowed estimating homogeneous and heterogeneous diffusion coefficients, reflecting the dependence of diffusion with the surface coverage of PA. A series of rapid small-scale column tests were carried out to determine the breakthrough curves under different operational conditions (temperature, PA concentration, flow rate, bed length). The suitability of the proposed adsorbent for the remediation of PA in fixed-bed adsorption was proven by the high PA adsorption capacity along with the fast adsorption and the reduced height of the mass transfer zone of the columns. We have demonstrated that, thanks to the use of the heterogeneous diffusion coefficient, the proposed mathematical approach for the numerical solution to the mass balance of the column provides a reliable description of the breakthrough profiles and the design parameters, being much more accurate than models based in the classical linear driving force.
Resumo:
116 p.
Resumo:
The thermoset epoxy resin EPON 862, coupled with the DETDA hardening agent, are utilized as the polymer matrix component in many graphite (carbon fiber) composites. Because it is difficult to experimentally characterize the interfacial region, computational molecular modeling is a necessary tool for understanding the influence of the interfacial molecular structure on bulk-level material properties. The purpose of this research is to investigate the many possible variables that may influence the interfacial structure and the effect they will have on the mechanical behavior of the bulk level composite. Molecular models are established for EPON 862-DETDA polymer in the presence of a graphite surface. Material characteristics such as polymer mass-density, residual stresses, and molecular potential energy are investigated near the polymer/fiber interface. Because the exact degree of crosslinking in these thermoset systems is not known, many different crosslink densities (degrees of curing) are investigated. It is determined that a region exists near the carbon fiber surface in which the polymer mass density is different than that of the bulk mass density. These surface effects extend ~10 Å into the polymer from the center of the outermost graphite layer. Early simulations predict polymer residual stress levels to be higher near the graphite surface. It is also seen that the molecular potential energy in polymer atoms decreases with increasing crosslink density. New models are then established in order to investigate the interface between EPON 862-DETDA polymer and graphene nanoplatelets (GNPs) of various atomic thicknesses. Mechanical properties are extracted from the models using Molecular Dynamics techniques. These properties are then implemented into micromechanics software that utilizes the generalized method of cells to create representations of macro-scale composites. Micromechanics models are created representing GNP doped epoxy with varying number of graphene layers and interfacial polymer crosslink densities. The initial micromechanics results for the GNP doped epoxy are then taken to represent the matrix component and are re-run through the micromechanics software with the addition of a carbon fiber to simulate a GNP doped epoxy/carbon fiber composite. Micromechanics results agree well with experimental data, and indicate GNPs of 1 to 2 atomic layers to be highly favorable. The effect of oxygen bonded to the surface of the GNPs is lastly investigated. Molecular Models are created for systems with varying graphene atomic thickness, along with different amounts of oxygen species attached to them. Models are created for graphene containing hydroxyl groups only, epoxide groups only, and a combination of epoxide and hydroxyl groups. Results show models of oxidized graphene to decrease in both tensile and shear modulus. Attaching only epoxide groups gives the best results for mechanical properties, though pristine graphene is still favored.
Resumo:
The study of volcano deformation data can provide information on magma processes and help assess the potential for future eruptions. In employing inverse deformation modeling on these data, we attempt to characterize the geometry, location and volume/pressure change of a deformation source. Techniques currently used to model sheet intrusions (e.g., dikes and sills) often require significant a priori assumptions about source geometry and can require testing a large number of parameters. Moreover, surface deformations are a non-linear function of the source geometry and location. This requires the use of Monte Carlo inversion techniques which leads to long computation times. Recently, ‘displacement tomography’ models have been used to characterize magma reservoirs by inverting source deformation data for volume changes using a grid of point sources in the subsurface. The computations involved in these models are less intensive as no assumptions are made on the source geometry and location, and the relationship between the point sources and the surface deformation is linear. In this project, seeking a less computationally intensive technique for fracture sources, we tested if this displacement tomography method for reservoirs could be used for sheet intrusions. We began by simulating the opening of three synthetic dikes of known geometry and location using an established deformation model for fracture sources. We then sought to reproduce the displacements and volume changes undergone by the fractures using the sources employed in the tomography methodology. Results of this validation indicate the volumetric point sources are not appropriate for locating fracture sources, however they may provide useful qualitative information on volume changes occurring in the surrounding rock, and therefore indirectly indicate the source location.
Resumo:
Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.
Resumo:
Measurement and modeling techniques were developed to improve over-water gaseous air-water exchange measurements for persistent bioaccumulative and toxic chemicals (PBTs). Analytical methods were applied to atmospheric measurements of hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Additionally, the sampling and analytical methods are well suited to study semivolatile organic compounds (SOCs) in air with applications related to secondary organic aerosol formation, urban, and indoor air quality. A novel gas-phase cleanup method is described for use with thermal desorption methods for analysis of atmospheric SOCs using multicapillary denuders. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds in ambient air, and thereby improved precision and method detection limits for nonpolar analytes. A model is presented that predicts gas collection efficiency and particle collection artifact for SOCs in multicapillary denuders using polydimethylsiloxane (PDMS) sorbent. An approach is presented to estimate the equilibrium PDMS-gas partition coefficient (Kpdms) from an Abraham solvation parameter model for any SOC. A high flow rate (300 L min-1) multicapillary denuder was designed for measurement of trace atmospheric SOCs. Overall method precision and detection limits were determined using field duplicates and compared to the conventional high-volume sampler method. The high-flow denuder is an alternative to high-volume or passive samplers when separation of gas and particle-associated SOCs upstream of a filter and short sample collection time are advantageous. A Lagrangian internal boundary layer transport exchange (IBLTE) Model is described. The model predicts the near-surface variation in several quantities with fetch in coastal, offshore flow: 1) modification in potential temperature and gas mixing ratio, 2) surface fluxes of sensible heat, water vapor, and trace gases using the NOAA COARE Bulk Algorithm and Gas Transfer Model, 3) vertical gradients in potential temperature and mixing ratio. The model was applied to interpret micrometeorological measurements of air-water exchange flux of HCB and several PCB congeners in Lake Superior. The IBLTE Model can be applied to any scalar, including water vapor, carbon dioxide, dimethyl sulfide, and other scalar quantities of interest with respect to hydrology, climate, and ecosystem science.
Experimental and modeling studies of forced convection storage and drying systems for sweet potatoes
Resumo:
Sweet potato is an important strategic agricultural crop grown in many countries around the world. The roots and aerial vine components of the crop are used for both human consumption and, to some extent as a cheap source of animal feed. In spite of its economic value and growing contribution to health and nutrition, harvested sweet potato roots and aerial vine components has limited shelf-life and is easily susceptible to post-harvest losses. Although post-harvest losses of both sweet potato roots and aerial vine components is significant, there is no information available that will support the design and development of appropriate storage and preservation systems. In this context, the present study was initiated to improve scientific knowledge about sweet potato post-harvest handling. Additionally, the study also seeks to develop a PV ventilated mud storehouse for storage of sweet potato roots under tropical conditions. In study one, airflow resistance of sweet potato aerial vine components was investigated. The influence of different operating parameters such as airflow rate, moisture content and bulk depth at different levels on airflow resistance was analyzed. All the operating parameters were observed to have significant (P < 0.01) effect on airflow resistance. Prediction models were developed and were found to adequately describe the experimental pressure drop data. In study two, the resistance of airflow through unwashed and clean sweet potato roots was investigated. The effect of sweet potato roots shape factor, surface roughness, orientation to airflow, and presence of soil fraction on airflow resistance was also assessed. The pressure drop through unwashed and clean sweet potato roots was observed to increase with higher airflow, bed depth, root grade composition, and presence of soil fraction. The physical properties of the roots were incorporated into a modified Ergun model and compared with a modified Shedd’s model. The modified Ergun model provided the best fit to the experimental data when compared with the modified Shedd’s model. In study three, the effect of sweet potato root size (medium and large), different air velocity and temperature on the cooling/or heating rate and time of individual sweet potato roots were investigated. Also, a simulation model which is based on the fundamental solution of the transient equations was proposed for estimating the cooling and heating time at the centre of sweet potato roots. The results showed that increasing air velocity during cooling and heating significantly (P < 0.05) affects the cooling and heating times. Furthermore, the cooling and heating times were significantly different (P < 0.05) among medium and large size sweet potato roots. Comparison of the simulation results with experimental data confirmed that the transient simulation model can be used to accurately estimate the cooling and heating times of whole sweet potato roots under forced convection conditions. In study four, the performance of charcoal evaporative cooling pad configurations for integration into sweet potato roots storage systems was investigated. The experiments were carried out at different levels of air velocity, water flow rates, and three pad configurations: single layer pad (SLP), double layers pad (DLP) and triple layers pad (TLP) made out of small and large size charcoal particles. The results showed that higher air velocity has tremendous effect on pressure drop. Increasing the water flow rate above the range tested had no practical benefits in terms of cooling. It was observed that DLP and TLD configurations with larger wet surface area for both types of pads provided high cooling efficiencies. In study five, CFD technique in the ANSYS Fluent software was used to simulate airflow distribution in a low-cost mud storehouse. By theoretically investigating different geometries of air inlet, plenum chamber, and outlet as well as its placement using ANSYS Fluent software, an acceptable geometry with uniform air distribution was selected and constructed. Experimental measurements validated the selected design. In study six, the performance of the developed PV ventilated system was investigated. Field measurements showed satisfactory results of the directly coupled PV ventilated system. Furthermore, the option of integrating a low-cost evaporative cooling system into the mud storage structure was also investigated. The results showed a reduction of ambient temperature inside the mud storehouse while relative humidity was enhanced. The ability of the developed storage system to provide and maintain airflow, temperature and relative humidity which are the key parameters for shelf-life extension of sweet potato roots highlight its ability to reduce post-harvest losses at the farmer level, particularly under tropical climate conditions.
Resumo:
During the Snowball Earth events of the Neoproterozoic, tropical regions of the ocean could have developed a precipitated salt lag deposit left behind by sublimating sea ice. The major salt would have been hydrohalite, NaCl•2H2O. The crystals in such a deposit can be small and highly scattering, resulting in an allwave albedo similar to that of snow. The snow-free sea ice from which such a crust could develop has a lower albedo, around 0.5, so the development of a crust would substantially increase the albedo of tropical regions on Snowball Earth. Hydrohalite crystals are much less absorptive than ice in the near- infrared part of the solar spectrum, so their presence at the surface would increase the overall albedo as well as altering its spectral distribution. In this paper, we use laboratory measurements of the spectral albedo of a hydrohalite lag deposit, in combination with a radiative transfer model, to infer the inherent optical properties of hydrohalite as functions of wavelength. Using this result, we model mixtures of hydrohalite and ice representing both artificially created surfaces in the laboratory and surfaces relevant to Snowball Earth. The model is tested against sequences of laboratory measurements taken during the formation and the dissolution of a lag deposit of hydrohalite. We present a parameterization for the broadband albedo of cold, sublimating sea ice as it forms and evolves a hydrohalite crust, for use in climate models of Snowball Earth.
Resumo:
This paper is on modeling and simulation for an offshore wind system equipped with a semi-submersible floating platform, a wind turbine, a permanent magnet synchronous generator, a multiple point clamped four level or five level full-power converter, a submarine cable and a second order filter. The drive train is modeled by three mass model considering the resistant stiffness torque, structure and tower in deep water due to the moving surface elevation. The system control uses PWM by space vector modulation associated with sliding mode and proportional integral controllers. The electric energy is injected into the electric grid either by an alternated current link or by a direct current link. The model is intend to be a useful tool for unveil the behavior and performance of the offshore wind system, especially for the multiple point clamped full-power converter, under normal operation or under malfunctions.
Modeling nitrous oxide emissions in grass and grass-legume pastures in the western Brazilian Amazon.
Resumo:
Mineral nitrogen (N) dynamics in soil and the exchange of N gaseous in the interface soil-atmosphere are intimately associated with animal manure in pastures. According to soil inorganic-N pools and the site studied, forest or pasture, and pastures age the soil inorganic-N pools of ammonium and nitrate can be similar in the forest or ammonium dominated in the pasture. Also annual average net nitrification rates at soil surface in forest can be higher than in pasture suggesting a higher potential for nitrate-N losses either through leaching or gaseous emissions from intact forests compared with established pastures (NEILL et al., 1995).