945 resultados para subtropical estuaries
Resumo:
High molecular weight dissolved organic matter (HMW-DOM) represents an important component of dissolved organic carbon (DOC) in seawater and fresh-waters. In this paper, we report measurements of stable carbon (delta(13)C) isotopic compositions in total lipid, total hydrolyzable amino acid (THAA), total carbohydrate (TCHO) and acid-insoluble "uncharacterized" organic fractions separated from fourteen HMW-DOM samples collected from four U.S. estuaries. In addition, C/N ratio, delta(13) C and stable nitrogen (delta(15)N) isotopic compositions were also measured for the bulk HMW-DOM samples. Our results indicate that TCHO and THAA are the dominant organic compound classes, contributing 33-46% and 13-20% of the organic carbon in HMW-DOM while total lipid accounts for only <2% of the organic carbon in the samples. In all samples. a significant fraction (35-49%) of HMW-DOM was included in the acid-insoluble fraction. Distinct differences in isotopic compositions exist among bulk samples, the compound classes and the acid-insoluble fractions. Values of delta(13)C and delta(15)N measured for bulk HMW-DOM varied from -22.1 to -30.1parts per thousand and 2.8 to 8.9parts per thousand, respectively and varied among the four estuaries studied as well. Among the Compound classes, TCHO was more enriched in C-13 (delta(13)C = -18.5 to -22.8parts per thousand) compared with THAA (delta(13)C = -20.0 to -29.6parts per thousand) and total lipid (delta(13)C = -25.7 to -30.7parts per thousand). The acid-insoluble organic fractions, in general, had depleted C-13 values (delta(13)C = -23.0 to -34.4parts per thousand). Our results indicate that the observed differences in both delta(13)C and delta(15)N were mainly due to the differences in sources of organic matter and nitrogen inputs to these estuaries in addition to the microbial processes responsible for isotopic fractionation among the compound classes. Both terrestrial sources and local sewage inputs contribute significantly to the HMW-DOM pool in the estuaries studied and thus had a strong influence on its isotopic signatures. Copyright (C) 2004 Elsevier Ltd.
Resumo:
High molecular weight dissolved organic matter (HMW-DOM, > 1000 Da) represents a major fraction (> 30%) of dissolved organic carbon (DOC) in the ocean and thus plays an important role in the global biogeochemical cycling of carbon and many other elements. Its organic sources and formation mechanisms, however, are still not well understood especially in estuarine and coastal regions where multiple natural and anthropogenic sources contribute to total HMW-DOM. In this paper we report our measurements of natural radiocarbon (C-14) abundances and stable carbon isotope (C-13) compositions of the major biochemical compound classes: amino acids, carbohydrates and lipids separated from eight HMW-DOM samples collected from five US estuaries as part of our on-going study of sources, distribution and transport of chromophoric dissolved organic matter (CDOM) in estuarine and coastal waters. Distinct differences in both C-14 and C-13 values were found among the bulk HMW-DOM samples as well as the individual compound classes. Radiocarbon ages of the major compound classes varied by as much as 27,000 years in a single sample. The calculated average radiocarbon ages of the compound fractions of HMW-DOM indicate that the total lipid fraction is very "old", while the acid-insoluble fraction is slightly younger. Total amino acid and carbohydrate fractions, however, have relatively modern apparent C-14 ages. The significant variability in C-14 ages among the compound classes indicates not only multiple organic carbon sources but also different formation and turnover pathways controlling the cycling of different biochemical components of HMW-DOM in estuarine and coastal waters. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Planktonic microbial community structure and classical food web were investigated in the large shallow eutrophic Lake Taihu (2338 km(2), mean depth 1.9 m) located in subtropical Southeast China. The water column of the lake was sampled biweekly at two sites located 22 km apart over a period of twelve month. Site 1 is under the regime of heavy eutrophication while Site 2 is governed by wind-driven sediment resuspension. Within-lake comparison indicates that phosphorus enrichment resulted in increased abundance of microbial components. However, the coupling between total phosphorus and abundance of microbial components was different between the two sites. Much stronger coupling was observed at Site 1 than at Site 2. The weak coupling at Site 2 was mainly caused by strong sediment resuspension, which limited growth of phytoplankton and, consequently, growth of bacterioplankton and other microbial components. High percentages of attached bacteria, which were strongly correlated with the biomass of phytoplankton, especially Microcystis spp., were found at Site 1 during summer and early autumn, but no such correlation was observed at Site 2. This potentially leads to differences in carbon flow through microbial food web at different locations. Overall, significant heterogeneity of microbial food web structure between the two sites was observed. Site-specific differences in nutrient enrichment (i.e. nitrogen and phosphorus) and sediment resuspension were identified as driving forces of the observed intra-habitat differences in food web structure.
Resumo:
2002
Resumo:
O Ensaio Elite Sul vem sendo conduzido desde a década de 90 em vários locais representativos da região subtropical. O objetivo desse trabalho foi avaliar o desempenho, a adaptabilidade e a estabilidade de híbridos de milho avaliados no ensaio Elite Sul pela metodologia de modelos mistos. Os ensaios foram em 15 ambientes com número variável de tratamentos. Todos em delineamento látice, com duas linhas de cinco metros, espaçamento entre linhas de 0,80m e duas repetições. Para as análises de adaptabilidade e estabilidade, foram utilizados os dados de rendimento de grão, corrigidos para 13% de umidade, e aplicada a metodologia de Modelos Lineares Mistos seguindo o modelo 52 do software SELEGEN-REML/BLUP. Considerando-se os valores genotípicos e capitalizando-se a interação média entre genótipos e ambiente (u+g+ge) os híbridos Maximus, 1I1002, 1I998, 2F633 5 e 1G748 5 foram os melhores. Houve completa concordância na seleção dos cinco híbridos de melhor desempenho, entre os valores genotípicos e MHPRVG (medida concomitante de produtividade, adaptabilidade e estabilidade).
Resumo:
This study investigates the changes of the North Atlantic subtropical high (NASH) and its impact on summer precipitation over the southeastern (SE) United States using the 850-hPa geopotential height field in the National Centers forEnvironmental Prediction (NCEP) reanalysis, the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), long-term rainfall data, and Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) model simulations during the past six decades (1948-2007). The results show that the NASH in the last 30 yr has become more intense, and its western ridge has displaced westward with an enhanced meridional movement compared to the previous 30 yr. When the NASH moved closer to the continental United States in the three most recent decades, the effect of the NASH on the interannual variation of SE U.S. precipitation is enhanced through the ridge's north-south movement. The study's attribution analysis suggested that the changes of the NASH are mainly due to anthropogenic warming. In the twenty-first century with an increase of the atmospheric CO2 concentration, the center of the NASH would be intensified and the western ridge of the NASH would shift farther westward. These changes would increase the likelihood of both strong anomalously wet and dry summers over the SEUnited States in the future, as suggested by the IPCC AR4 models. © 2011 American Meteorological Society.
Resumo:
© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.
Resumo:
The rationale behind the use of analyses of estuarine organisms to assess levels of heavy-metal contamination is described and compared with alternative methods such as the analysis of waters or sediments. Based on field observations in United Kingdom estuaries and on evidence from the literature, an assessment is made of the suitability of 17 species as the indicators of metals and metalloids including Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Se, Sn, Pb and Zn.
Resumo:
The use of the deposit-feeding molluscs Scrobicularia plana and Macoma balthica and the burrowing polychaete Nereis diversicolor as indicators of the biological availability of heavy metals in sediments has been evaluated. Concentrations of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sn and Zn have been measured in organisms and sediments from more than 30 estuaries in south west England and South Wales and indicate that the biological availability of most metals varies by order of magnitude between uncontaminated and contaminated sites. The results have been compared with those obtained with the use of other species of indicator organisms in estuaries.