997 resultados para statistical discrimination
Resumo:
The main objective of this study is to describe and characterize the behaviour of fish prices in Nigeria. Drawing upon aspects of the data from a nationwide fish survey in 1980/81 and on various secondary data, the study analyses the pattern of fish price movement and makes projections of fish prices in Nigeria till 2002 A.D. It is concluded that unless efforts are directed at stemming inflation in fish prices, prices paid by fish consumers in Nigeria will be more than doubled within the next two decades
Resumo:
Transcription factor binding sites (TFBS) play key roles in genebior 6.8 wavelet expression and regulation. They are short sequence segments with de¯nite structure and can be recognized by the corresponding transcription factors correctly. From the viewpoint of statistics, the candidates of TFBS should be quite di®erent from the segments that are randomly combined together by nucleotide. This paper proposes a combined statistical model for ¯nding over- represented short sequence segments in di®erent kinds of data set. While the over-represented short sequence segment is described by position weight matrix, the nucleotide distribution at most sites of the segment should be far from the background nucleotide distribution. The central idea of this approach is to search for such kind of signals. This algorithm is tested on 3 data sets, including binding sites data set of cyclic AMP receptor protein in E.coli, PlantProm DB which is a non-redundant collection of proximal promoter sequences from di®erent species, collection of the intergenic sequences of the whole genome of E.Coli. Even though the complexity of these three data sets is quite di®erent, the results show that this model is rather general and sensible.
Resumo:
The bulletin presents summary tables and charts on levels of fishing activity, fishing effort, yields and economic values of yields for the fisheries of Kainji Lake, Nigeria for the year 1997. Frame survey data and fishing gear measurements are also included. (PDF contains 34 pages)
Resumo:
A tabulated summary is presented of the main fisheries data collected to date (1998) by the Nigerian-German Kainji Lake Fisheries Promotion Project, together with a current overview of the fishery. The data are given under the following sections: 1) Fishing localities and types; 2) Frame survey data; 3) Number of licensed fishermen by state; 4) Mesh size distribution; 5) Fishing net characteristics; 6) Fish yield; 7) Total annual fishing effort by gear type; 8) Total annual value of fish landed by gear type; 9) Graphs of effort and CPUE by gear type. (PDF contains 36 pages)
Resumo:
A tabulated summary is presented of the main Lake Kainji fisheries data collected to date (1999) by the Nigerian-German Kainji Lake Fisheries Promotion Project, together with a current overview of the fishery. The data are given under the following sections: 1) Fishing localities and types; 2) Frame survey data; 3) Number of licensed fishermen by state; 4) Mesh size distribution; 5) Fishing net characteristics; 6) Fish yield; 7) Average monthly CPUE by gear type; 8)Average monthly fishing activity by gear type; 9) Total annual fishing effort by gear type; 10) Total annual value of fish landed by gear type; 11) Trends of the total yield by gear type. (PDF contains 34 pages)
Resumo:
This thesis explores the problem of mobile robot navigation in dense human crowds. We begin by considering a fundamental impediment to classical motion planning algorithms called the freezing robot problem: once the environment surpasses a certain level of complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place (or performs unnecessary maneuvers) to avoid collisions. Since a feasible path typically exists, this behavior is suboptimal. Existing approaches have focused on reducing predictive uncertainty by employing higher fidelity individual dynamics models or heuristically limiting the individual predictive covariance to prevent overcautious navigation. We demonstrate that both the individual prediction and the individual predictive uncertainty have little to do with this undesirable navigation behavior. Additionally, we provide evidence that dynamic agents are able to navigate in dense crowds by engaging in joint collision avoidance, cooperatively making room to create feasible trajectories. We accordingly develop interacting Gaussian processes, a prediction density that captures cooperative collision avoidance, and a "multiple goal" extension that models the goal driven nature of human decision making. Navigation naturally emerges as a statistic of this distribution.
Most importantly, we empirically validate our models in the Chandler dining hall at Caltech during peak hours, and in the process, carry out the first extensive quantitative study of robot navigation in dense human crowds (collecting data on 488 runs). The multiple goal interacting Gaussian processes algorithm performs comparably with human teleoperators in crowd densities nearing 1 person/m2, while a state of the art noncooperative planner exhibits unsafe behavior more than 3 times as often as the multiple goal extension, and twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our noncooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algorithm. For inclusive validation purposes, we show that either our non-interacting planner or our reactive planner captures the salient characteristics of nearly any existing dynamic navigation algorithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical for safe and efficient robot navigation in dense human crowds.
Finally, we produce a large database of ground truth pedestrian crowd data. We make this ground truth database publicly available for further scientific study of crowd prediction models, learning from demonstration algorithms, and human robot interaction models in general.
Resumo:
A constrained high-order statistical algorithm is proposed to blindly deconvolute the measured spectral data and estimate the response function of the instruments simultaneously. In this algorithm, no prior-knowledge is necessary except a proper length of the unit-impulse response. This length can be easily set to be the width of the narrowest spectral line by observing the measured data. The feasibility of this method has been demonstrated experimentally by the measured Raman and absorption spectral data.