952 resultados para standard gas generation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

New telecom wavelength sources of polarization entangled photon pairs allow the distribution of entanglement through metro-access networks using standard equipment. This is essential to ease the deployment of future applications that can profit from quantum entanglement, such as quantum cryptography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Permanent displacements of a gas turbine founded on a fine, poorly graded, and medium density sand are studied. The amplitudes and modes of vibration are computed using Barkan´s formulation, and the “High-Cycle Accumulation” (HCA) model is employed to account for accumulated deformations due to the high number of cycles. The methodology is simple: it can be easily incorporated into standard mathematical software, and HCA model parameters can be estimated based on granulometry and index properties. Special attention is devoted to ‘transient’ situations at equipment´s start-up, during which a range of frequencies – including frequencies that could be similar to the natural frequencies of the ground – is traversed. Results show that such transient situations could be more restrictive than stationary situations corresponding to normal operation. Therefore, checking the stationary situation only might not be enough, and studying the influence of transient situations on computed permanent displacements is needed to produce a proper foundation design

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Workflows are increasingly used to manage and share scientific computations and methods. Workflow tools can be used to design, validate, execute and visualize scientific workflows and their execution results. Other tools manage workflow libraries or mine their contents. There has been a lot of recent work on workflow system integration as well as common workflow interlinguas, but the interoperability among workflow systems remains a challenge. Ideally, these tools would form a workflow ecosystem such that it should be possible to create a workflow with a tool, execute it with another, visualize it with another, and use yet another tool to mine a repository of such workflows or their executions. In this paper, we describe our approach to create a workflow ecosystem through the use of standard models for provenance (OPM and W3C PROV) and extensions (P-PLAN and OPMW) to represent workflows. The ecosystem integrates different workflow tools with diverse functions (workflow generation, execution, browsing, mining, and visualization) created by a variety of research groups. This is, to our knowledge, the first time that such a variety of workflow systems and functions are integrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Concentrating Solar Power (CSP) plants based on parabolic troughs utilize auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs. Methods A complete Life Cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35% of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative Energy Demands (CED) and Energy Payback Times (EPT) were also determined for each scenario. Results and discussion Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh, acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilization NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions. Conclusions Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilization. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El sector energético, en España en particular, y de forma similar en los principales países de Europa, cuenta con una significativa sobrecapacidad de generación, debido al rápido y significativo crecimiento de las energías renovables en los últimos diez años y la reducción de la demanda energética, como consecuencia de la crisis económica. Esta situación ha hecho que las centrales térmicas de generación de electricidad, y en concreto los ciclos combinados de gas, operen con un factor de utilización extremadamente bajo, del orden del 10%. Además de la reducción de ingresos, esto supone para las plantas trabajar continuamente fuera del punto de diseño, provocando una significativa pérdida de rendimiento y mayores costes de explotación. En este escenario, cualquier contribución que ayude a mejorar la eficiencia y la condición de los equipos, es positivamente considerada. La gestión de activos está ganando relevancia como un proceso multidisciplinar e integrado, tal y como refleja la reciente publicación de las normas ISO 55000:2014. Como proceso global e integrado, la gestión de activos requiere el manejo de diversos procesos y grandes volúmenes de información, incluso en tiempo real. Para ello es necesario utilizar tecnologías de la información y aplicaciones de software. Esta tesis desarrolla un concepto integrado de gestión de activos (Integrated Plant Management – IPM) aplicado a centrales de ciclo combinado y una metodología para estimar el beneficio aportado por el mismo. Debido a las incertidumbres asociadas a la estimación del beneficio, se ha optado por un análisis probabilístico coste-beneficio. Así mismo, el análisis cuantitativo se ha completado con una validación cualitativa del beneficio aportado por las tecnologías incorporadas al concepto de gestión integrada de activos, mediante una entrevista realizada a expertos del sector de generación de energía. Los resultados del análisis coste-beneficio son positivos, incluso en el desfavorable escenario con un factor de utilización de sólo el 10% y muy prometedores para factores de utilización por encima del 30%. ABSTRACT The energy sector particularly in Spain, and in a similar way in Europe, has a significant overcapacity due to the big growth of the renewable energies in the last ten years, and it is seriously affected by the demand decrease due to the economic crisis. That situation has forced the thermal plants and in particular, the combined cycles to operate with extremely low annual average capacity factors, very close to 10%. Apart from the incomes reduction, working in out-of-design conditions, means getting a worse performance and higher costs than expected. In this scenario, anything that can be done to improve the efficiency and the equipment condition is positively received. Asset Management, as a multidisciplinary and integrated process, is gaining prominence, reflected in the recent publication of the ISO 55000 series in 2014. Dealing Asset Management as a global, integrated process needs to manage several processes and significant volumes of information, also in real time, that requires information technologies and software applications to support it. This thesis proposes an integrated asset management concept (Integrated Plant Management-IPM) applied to combined cycle power plants and develops a methodology to assess the benefit that it can provide. Due to the difficulties in getting deterministic benefit estimation, a statistical approach has been adopted for the cot-benefit analysis. As well, the quantitative analysis has been completed with a qualitative validation of the technologies included in the IPM and their contribution to key power plant challenges by power generation sector experts. The cost- benefit analysis provides positive results even in the negative scenario of annual average capacity factor close to 10% and is promising for capacity factors over 30%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La presente tesis doctoral, “Aprovechamiento térmico de residuos estériles de carbón para generación eléctrica mediante tecnologías de combustión y gasificación eficientes y con mínimo impacto ambiental”, desarrolla la valorización energética de los residuos del carbón, estériles de carbón, producidos durante las etapas de extracción y lavado del carbón. El sistema energético se encuentra en una encrucijada, estamos asistiendo a un cambio en el paradigma energético y, en concreto, en el sector de la generación eléctrica. Se precipita un cambio en la generación y el consumo eléctricos. Una mayor concienciación por la salud está forzando la contención y eliminación de agentes contaminantes que se generan por la utilización de combustibles fósiles de la forma en la que se viene haciendo. Aumenta la preocupación por el cambio climático y por contener en 2°C el aumento de la temperatura de la Tierra para final de este siglo, circunstancia que está impulsando el desarrollo e implantación definitiva de tecnología de control y reducción de emisiones CO2. Generar electricidad de una manera sostenible se está convirtiendo en una obligación. Esto se materializa en generar electricidad respetando el medioambiente, de una forma eficiente en la utilización de los recursos naturales y a un coste competitivo, pensando en el desarrollo de la sociedad y en el beneficio de las personas. En la actualidad, el carbón es la principal fuente de energía utilizada para generar electricidad, y su empleo presenta la forma de energía más barata para mejorar el nivel de vida de cualquier grupo y sociedad. Además, se espera que el carbón siga presente en el mix de generación eléctrica, manteniendo una significativa presencia y extrayéndose en elevadas cantidades. Pero la producción de carbón lleva asociada la generación de un residuo, estéril, que se produce durante la extracción y el lavado del mineral de carbón. Durante décadas se ha estudiado la posibilidad de utilizar el estéril y actualmente se utiliza, en un limitado porcentaje, en la construcción de carreteras, terraplenes y rellenos, y en la producción de algunos materiales de construcción. Esta tesis doctoral aborda la valorización energética del estéril, y analiza el potencial aprovechamiento del residuo para generar electricidad, en una instalación que integre tecnología disponible para minimizar el impacto medioambiental. Además, persigue aprovechar el significativo contenido en azufre que presenta el estéril para producir ácido sulfúrico (H2SO4) como subproducto de la instalación, un compuesto químico muy demandado por la industria de los fertilizantes y con multitud de aplicaciones en otros mercados. Se ha realizado el análisis de caracterización del estéril, los parámetros significativos y los valores de referencia para su empleo como combustible, encontrándose que su empleo como combustible para generar electricidad es posible. Aunque en España se lleva extrayendo carbón desde principios del siglo XVIII, se ha evaluado para un período más reciente la disponibilidad del recurso en España y la normativa existente que condiciona su aplicación en el territorio nacional. Para el período evaluado, se ha calculado que podrían estar disponibles más de 68 millones de toneladas de estéril susceptibles de ser valorizados energéticamente. Una vez realizado el análisis de la tecnología disponible y que podría considerarse para emplear el estéril como combustible, se proponen cuatro configuraciones posibles de planta, tres de ellas basadas en un proceso de combustión y una de ellas en un proceso de gasificación. Tras evaluar las cuatro configuraciones por su interés tecnológico, innovador y económico, se desarrolla el análisis conceptual de una de ellas, basada en un proceso de combustión. La instalación propuesta tiene una capacidad de 65 MW y emplea como combustible una mezcla de carbón y estéril en relación 20/80 en peso. La instalación integra tecnología para eliminar en un 99,8% el SO2 presente en el gas de combustión y en más de un 99% las partículas generadas. La instalación incorpora una unidad de producción de H2SO4, capaz de producir 18,5 t/h de producto, y otra unidad de captura para retirar un 60% del CO2 presente en la corriente de gases de combustión, produciendo 48 tCO2/h. La potencia neta de la planta es 49,7 MW. Se ha calculado el coste de inversión de la instalación, y su cálculo resulta en un coste de inversión unitario de 3.685 €/kW. ABSTRACT The present doctoral thesis, “Thermal utilisation of waste coal for electricity generation by deployment of efficient combustion and gasification technologies with minimum environmental impact”, develops an innovative waste-to-energy concept of waste coals produced during coal mining and washing. The energy system is at a dilemma, we are witnessing a shift in the energy paradigm and specifically in the field of electricity generation. A change in the generation and electrical consumption is foreseen. An increased health consciousness is forcing the containment and elimination of pollutants that are generated by the use of fossil fuels in the way that is being done. Increasing concern about climate change and to contain the rise of global temperature by 2°C by the end of this century, is promoting the development and final implementation of technology to control and reduce the CO2 emission. Electricity generation in a sustainable manner is becoming an obligation. This concept materialised in generating electricity while protecting the environment and deployment of natural resources at a competitive cost, considering the development of society and people´s benefit. Currently, coal is the main source of energy employ to generate electricity, and its use represents the most cost competitive form of energy to increase the standard of living of any group or society. Moreover, coal will keep playing a key role in the global electricity generation mix, maintaining a significant presence and being extracting in large amounts. However, coal production implies the production of waste, termed waste coal or culm in Pennsylvania anthracite extraction, produced during coal mining and coal washing activities. During the last decades, the potential use of waste coal has been studied, and currently, in a limited amount, waste coal is used in roads construction, embankments and fillings, and to produce some construction materials. This doctoral thesis evaluates the waste to energy of waste coals and assesses its potential use to generate electricity, implementing available technology to minimise the environment impact. Additionally, it pursues the significant advantage that presents sulphur content in waste coal to produce sulphuric acid (H2SO4) as a byproduct of the waste-to-energy process, a chemical compound highly demanded by the fertiliser industry and many applications in other markets. It analyses the characteristics of waste coal, and assesses the significant parameters and reference values for its use as fuel, being its fuel use for electricity generation very possible. While mining coal is taking place in Spain since the 1700s, it has been evaluated for a more recent period the waste coal available in Spain and the existing legislation that affects its application and deploy to generate electricity in the country. For the evaluation period has been calculated that may be available more than 68 million tons of waste coal that can be waste-toenergy. The potential available technology to deploy waste coal as fuel has been evaluated and assessed. After considering this, the doctoral thesis proposes four innovative alternatives of facility configuration, three of them based on a combustion process and one in a gasification process. After evaluating the four configurations for its technological, innovative and economic interest, the conceptual analysis of one of alternatives, based on a combustion process, takes place. The proposed alternative facility developed has a capacity of 65 MW, using as fuel a mixture of coal and waste coal 80/20 by weight. The facility comprises technology to remove 99.8% SO2 present in the flue gas and more than 99% of the particles. The facility includes a unit capable of producing 18.5 t/h of H2SO4, and another capture facility, removing 60% of CO2 present in the flue gas stream, producing 48 tCO2/h. The net capacity of the power station is 49.7 MW. The facility unitary cost of investment is 3,685 €/kW.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, an analytical method was developed for the determination of pharmaceutical drugs inbiosolids. Samples were extracted with an acidic mixture of water and acetone (1:2, v/v) and supportedliquid extraction was used for the clean-up of extracts, eluting with ethyl acetate:methanol (90:10, v/v).The compounds were determined by gas chromatography?tandem mass spectrometry using matrix-match calibration after silylation to form their t-butyldimethylsilyl derivatives. This method presentsvarious advantages, such as a fairly simple operation for the analysis of complex matrices, the use ofinexpensive glassware and low solvent volumes. Satisfactory mean recoveries were obtained with thedeveloped method ranging from 70 to 120% with relative standard deviations (RSDs) ? 13%, and limitsof detection between 0.5 and 3.6 ng g?1. The method was then successfully applied to biosolids samplescollected in Madrid and Catalonia (Spain). Eleven of the sixteen target compounds were detected in thestudied samples, at levels up to 1.1 ?g g?1(salicylic acid). Ibuprofen, caffeine, paracetamol and fenofibratewere detected in all of the samples analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of 8-hydroxy-2′-deoxyguanosine (8-OH-dGuo) in DNA by high-performance liquid chromatography/mass spectrometry (LC/MS) was studied. A methodology was developed for separation by LC of 8-OH-dGuo from intact and modified nucleosides in DNA hydrolyzed by a combination of four enzymes: DNase I, phosphodiesterases I and II and alkaline phosphatase. The atmospheric pressure ionization-electrospray process was used for mass spectral measurements. A stable isotope-labeled analog of 8-OH-dGuo was used as an internal standard for quantification by isotope-dilution MS (IDMS). Results showed that LC/IDMS with selected ion-monitoring (SIM) is well suited for identification and quantification of 8-OH-dGuo in DNA at background levels and in damaged DNA. The sensitivity level of LC/IDMS-SIM was found to be comparable to that reported previously using LC-tandem MS (LC/MS/MS). It was found that approximately five lesions per 106 DNA bases can be detected using amounts of DNA as low as 2 µg. The results also suggest that this lesion may be quantified in DNA at levels of one lesion per 106 DNA bases, or even lower, when more DNA is used. Up to 50 µg of DNA per injection were used without adversely affecting the measurements. Gas chromatography/isotope-dilution MS with selected-ion monitoring (GC/IDMS-SIM) was also used to measure this compound in DNA following its removal from DNA by acidic hydrolysis or by hydrolysis with Escherichia coli Fpg protein. The background levels obtained by LC/IDMS-SIM and GC/IDMS-SIM were almost identical. Calf thymus DNA and DNA isolated from cultured HeLa cells were used for this purpose. This indicates that these two techniques can provide similar results in terms of the measurement of 8-OH-dGuo in DNA. In addition, DNA in buffered aqueous solution was damaged by ionizing radiation at different radiation doses and analyzed by LC/IDMS-SIM and GC/IDMS-SIM. Again, similar results were obtained by the two techniques. The sensitivity of GC/MS-SIM for 7,8-dihydro-8-oxoguanine was also examined and found to be much greater than that of LC/MS-SIM and the reported sensitivity of LC/MS/MS for 8-OH-dGuo. Taken together, the results unequivocally show that LC/IDMS-SIM is well suited for sensitive and accurate measurement of 8-OH-dGuo in DNA and that both LC/IDMS-SIM and GC/IDMS-SIM can provide similar results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Cruise 13 of R/V Akademik Sergey Vavilov in the Pechora Sea, six heat flow varied from 50 to 75 mW/m**2. Deep heat flow in the Pechora Sea was calculated equal to 45 mW/m**2, which is confirmed by results of geological and geophysical studies and corresponds to Middle Baikal age of the basement. A model of structure of the lithosphere in the Pechora Sea is suggested. Total thickness of the lithosphere in the basin (190 km) determined from geothermal data agrees well with that in transition zones from the continent to the ocean. According to estimates of deep heat flow in the region obtained, thickness of the mantle (160 km), of the basaltic (15 km), and of the granitic (15 km) layers of the lithosphere were also evaluated. Temperature values at boundaries of the sedimentary layers were calculated over a geological and geophysical profile crossing the Pechora Sea basin. Temperatures obtained agree with the temperature interval of hydrocarbon generation and correspond to Permian-Triassic sedimentary sequences, which are the most productive ones in the Pechora Sea region from the point of view of oil and gas potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residual concentrations and distributions of hydrocarbon gases from methane to n-heptane were measured in sediments at seven sites on Ocean Drilling Program (ODP) Leg 164. Three sites were drilled at the Cape Fear Diapir of the Carolina Rise, and one site was drilled on the Blake Ridge Diapir. Methane concentrations at these sites result from microbial generation which is influenced by the amount of pore-water sulfate and possible methane oxidation. Methane hydrate was found at the Blake Ridge Diapir site. The other hydrocarbon gases at these sites are likely the product of early microbial processes. Three sites were drilled on a transect of holes across the crest of the Blake Ridge. The base of the zone of gas-hydrate occurrence was penetrated at all three sites. Trends in hydrocarbon gas distributions suggest that methane is microbial in origin and that the hydrocarbon gas mixture is affected by diagenesis, outgassing, and, near the surface, by microbial oxidation. Methane hydrate was recovered at two of these three sites, although gas hydrate is likely present at all three sites. The method used here for determining amounts of residual hydrocarbon gases has its limitations and provides poor assessment of gas distributions, particularly in the stratigraphic interval below about ~100 mbsf. One advantage of the method, however, is that it yields sufficient quantities of gas for other studies such as isotopic determinations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short-term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry-over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional K-Ar ages have been determined and inert-gas abundances have been measured on representative samples of altered rocks from Deep Sea Drilling Project Holes 501, 504B, and 505B in an attempt to correlate their degree of alteration with inert-gas and K-Ar data. Samples taken from the first 60 meters below the sediment/basalt interface give significantly higher ages than would be expected from the magnetic stratigraphy, though at greater depths the calculated ages are in broad agreement with the expected age. The inert gas ratios 20Ne/36Ar, 36Ar/84Kr, and 84Kr/130Xe also show a marked discontinuity at the 60-meter depth, and all these effects are interpreted as being a consequence of low-temperature alteration produced by burial metamorphism and by interaction with sea water (halmyrolysis).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06