745 resultados para sports medicine
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Gastrointestinal problems are common, especially in endurance athletes, and often impair performance or subsequent recovery. Generally, studies suggest that 30-50 % of athletes experience such complaints. Most gastrointestinal symptoms during exercise are mild and of no risk to health, but hemorrhagic gastritis, hematochezia, and ischemic bowel can present serious medical challenges. Three main causes of gastrointestinal symptoms have been identified, and these are either physiological, mechanical, or nutritional in nature. During intense exercise, and especially when hypohydrated, mesenteric blood flow is reduced; this is believed to be one of the main contributors to the development of gastrointestinal symptoms. Reduced splanchnic perfusion could result in compromised gut permeability in athletes. However, although evidence exists that this might occur, this has not yet been definitively linked to the prevalence of gastrointestinal symptoms. Nutritional training and appropriate nutrition choices can reduce the risk of gastrointestinal discomfort during exercise by ensuring rapid gastric emptying and the absorption of water and nutrients, and by maintaining adequate perfusion of the splanchnic vasculature. A number of nutritional manipulations have been proposed to minimize gastrointestinal symptoms, including the use of multiple transportable carbohydrates, and potentially the use of nutrients that stimulate the production of nitric oxide in the intestine and thereby improve splanchnic perfusion. However, at this stage, evidence for beneficial effects of such interventions is lacking, and more research needs to be conducted to obtain a better understanding of the etiology of the problems and to improve the recommendations to athletes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One of the main causes of incapacity in athletes, be they human or equines, is the occurrence of intra-articular lesions. The equines are each time more required in his athletic performance, resulting in intense stress to the structures that composes the locomotor device. The leading cause of human and equine athlete’s functional incapacity is the intra-articular disorders. One of the greatest advances in sports medicine was the development of arthroscopy as a minimal invasive intra-articular surgery. The defining characteristic of diagnostic or surgical arthroscopy is featured by minimal tissue damage and broad inspection of internal structures inside the joint associated with low morbidity and complications. The advantages of surgical arthroscopy over traditional surgery are well known: limited hospitalization, early return to competition, lower risks of post-operative joint rigidity, magnification of inspected structures, joint lavage associated or not with removal of potentially dangerous substances. Arthroscopy cannot replace conventional methods and must not do so; however, the intrinsic limitations of conventional diagnostic techniques, such as radiology and synovial fluid analysis, must be kept in mind, particularly in evaluating damage to cartilage and the synovial membrane. Arthroscopy has now become the accepted method of performing all joint surgery, however it is mainly used for radical surgery, such as osteochondral fragment removal, surgical curettage and arthroplasty
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of this study was to determine the relationship between blood lactate and glucose during an incremental test after exercise induced lactic acidosis, under normal and acute β-adrenergic blockade. Eight fit males (cyclists or triathletes) performed a protocol to determine the intensity corresponding to the individual equilibrium point between lactate entry and removal from the blood (incremental test after exercise induced lactic acidosis), determined from the blood lactate (Lacmin) and glucose (Glucmin) response. This protocol was performed twice in a double-blind randomized order by ingesting either propranolol (80 mg) or a placebo (dextrose), 120 min prior to the test. The blood lactate and glucose concentration obtained 7 minutes after anaerobic exercise (Wingate test) was significantly lower (p<0.01) with the acute β-adrenergic blockade (9.1±1.5 mM; 3.9±0.1 mM), respectively than in the placebo condition (12.4±1.8 mM; 5.0±0.1 mM). There was no difference (p>0.05) between the exercise intensity determined by Lacmin (212.1±17.4 W) and Glucmin (218.2±22.1 W) during exercise performed without acute β-adrenergic blockade. The exercise intensity at Lacmin was lowered (p<0.05) from 212.1±17.4 to 181.0±15.6 W and heart rate at Lacmin was reduced (p<0.01) from 161.2±8.4 to 129.3±6.2 beats min-1 as a result of the blockade. It was not possible to determine the exercise intensity corresponding to Glucmin with β-adrenergic blockade, since the blood glucose concentration presented a continuous decrease during the incremental test. We concluded that the similar pattern response of blood lactate and glucose during an incremental test after exercise induced lactic acidosis, is not present during β-adrenergic blockade suggesting that, at least in part, this behavior depends upon adrenergic stimulation.