984 resultados para speech recognition
Resumo:
Surveillance registers monitor the prevalence of cerebral palsy and the severity of resulting impairments across time and place. The motor disorders of cerebral palsy can affect children’s speech production and limit their intelligibility. We describe the development of a scale to classify children’s speech performance for use in cerebral palsy surveillance registers, and its reliability across raters and across time. Speech and language therapists, other healthcare professionals and parents classified the speech of 139 children with cerebral palsy (85 boys, 54 girls; mean age 6.03 years, SD 1.09) from observation and previous knowledge of the children. Another group of health professionals rated children’s speech from information in their medical notes. With the exception of parents, raters reclassified children’s speech at least four weeks after their initial classification. Raters were asked to rate how easy the scale was to use and how well the scale described the child’s speech production using Likert scales. Inter-rater reliability was moderate to substantial (k > .58 for all comparisons). Test–retest reliability was substantial to almost perfect for all groups (k > .68). Over 74% of raters found the scale easy or very easy to use; 66% of parents and over 70% of health care professionals judged the scale to describe children’s speech well or very well. We conclude that the Viking Speech Scale is a reliable tool to describe the speech performance of children with cerebral palsy, which can be applied through direct observation of children or through case note review.
Resumo:
Dissertação para obtenção do Grau de Doutor em Informática
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Software for pattern recognition of the larvae of mosquitoes Aedes aegypti and Aedes albopictus, biological vectors of dengue and yellow fever, has been developed. Rapid field identification of larva using a digital camera linked to a laptop computer equipped with this software may greatly help prevention campaigns.
Resumo:
Human Activity Recognition systems require objective and reliable methods that can be used in the daily routine and must offer consistent results according with the performed activities. These systems are under development and offer objective and personalized support for several applications such as the healthcare area. This thesis aims to create a framework for human activities recognition based on accelerometry signals. Some new features and techniques inspired in the audio recognition methodology are introduced in this work, namely Log Scale Power Bandwidth and the Markov Models application. The Forward Feature Selection was adopted as the feature selection algorithm in order to improve the clustering performances and limit the computational demands. This method selects the most suitable set of features for activities recognition in accelerometry from a 423th dimensional feature vector. Several Machine Learning algorithms were applied to the used accelerometry databases – FCHA and PAMAP databases - and these showed promising results in activities recognition. The developed algorithm set constitutes a mighty contribution for the development of reliable evaluation methods of movement disorders for diagnosis and treatment applications.
Resumo:
This dissertation analyzes the possibilities of utilizing speech-processing technologies to transform the user experience of ActivoBank’s customers while using remote banking solutions. The technologies are examined through different criteria to determine if they support the bank’s goals and strategy and whether they should be incorporated in the bank’s offering. These criteria include the alignment with ActivoBank’s values, the suitability of the technology providers, the benefits these technologies entail, potential risks, appeal to the customers and impact on customer satisfaction. The analysis suggests that ActivoBank might not be in a position to adopt these technologies at this point in time.
Resumo:
Graphics based systems of Augmented and Alternative Communication are widely used to promote communication in people with Autism Spectrum Disorders. This study discusses an integration of Augmented Reality in communication interventions, by relating elements of Augmented and Alternative Communication and Applied Behaviour Analysis strategies. An architecture for an Augmented Reality based interactive system to assist interventions is proposed. STAR provides an Augmented Reality tool to assist interventions performed by therapists and support for parents to join in and participate in the child’s intervention. Finally we report on the usage of the Augmented Reality tool in interventions with children with Autism Spectrum Disorders.
Resumo:
Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition.
Resumo:
"Lecture notes in computational vision and biomechanics series, ISSN 2212-9391, vol. 19"
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.
Resumo:
Vision-based hand gesture recognition is an area of active current research in computer vision and machine learning. Being a natural way of human interaction, it is an area where many researchers are working on, with the goal of making human computer interaction (HCI) easier and natural, without the need for any extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them, for example, to convey information. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. Hand gestures are a powerful human communication modality with lots of potential applications and in this context we have sign language recognition, the communication method of deaf people. Sign lan- guages are not standard and universal and the grammars differ from country to coun- try. In this paper, a real-time system able to interpret the Portuguese Sign Language is presented and described. Experiments showed that the system was able to reliably recognize the vowels in real-time, with an accuracy of 99.4% with one dataset of fea- tures and an accuracy of 99.6% with a second dataset of features. Although the im- plemented solution was only trained to recognize the vowels, it is easily extended to recognize the rest of the alphabet, being a solid foundation for the development of any vision-based sign language recognition user interface system.
Resumo:
In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.