945 resultados para setup carryover
Resumo:
In spite of over two decades of intense research, illumination and pose invariance remain prohibitively challenging aspects of face recognition for most practical applications. The objective of this work is to recognize faces using video sequences both for training and recognition input, in a realistic, unconstrained setup in which lighting, pose and user motion pattern have a wide variability and face images are of low resolution. The central contribution is an illumination invariant, which we show to be suitable for recognition from video of loosely constrained head motion. In particular there are three contributions: (i) we show how a photometric model of image formation can be combined with a statistical model of generic face appearance variation to exploit the proposed invariant and generalize in the presence of extreme illumination changes; (ii) we introduce a video sequence re-illumination algorithm to achieve fine alignment of two video sequences; and (iii) we use the smoothness of geodesically local appearance manifold structure and a robust same-identity likelihood to achieve robustness to unseen head poses. We describe a fully automatic recognition system based on the proposed method and an extensive evaluation on 323 individuals and 1474 video sequences with extreme illumination, pose and head motion variation. Our system consistently achieved a nearly perfect recognition rate (over 99.7% on all four databases). © 2012 Elsevier Ltd All rights reserved.
Resumo:
New embedded predictive control applications call for more eficient ways of solving quadratic programs (QPs) in order to meet demanding real-time, power and cost requirements. A single precision QP-on-a-chip controller is proposed, implemented in afield-programmable gate array (FPGA) with an iterative linear solver at its core. A novel offline scaling procedure is introduced to aid the convergence of the reduced precision solver. The feasibility of the proposed approach is demonstrated with a real-time hardware-in-the-loop (HIL) experimental setup where an ML605 FPGA board controls a nonlinear model of a Boeing 747 aircraft running on a desktop PC through an Ethernet link. Simulations show that the quality of the closed-loop control and accuracy of individual solutions is competitive with a conventional double precision controller solving linear systems using a Riccati recursion. © 2012 IFAC.
Resumo:
An experimental investigation has been undertaken in which vortex generators (VGs) have been employed to inhibit boundary-layer separation produced by the combined adversepressure- gradient of a terminal shock-wave and subsonic diffuser. This setup has been developed as part of a program to produce a more inlet relevant flow-field using a small-scale wind tunnel than previous studies. The resulting flow is dominated by large-scale separation, and as such, is thought to be a good test-bed for flow control. In this investigation, VGs have been added to determine their potential for shock-induced separation mitigation. In line with previous studies, it was observed that the application of VGs alone was not able to significantly alleviate separation overall, because enlarged corner separations was observed. Only when control of the corner separations using corner bleed was employed alongside centre-span control using VGs was a significant improvement in both wall pressure recovery (6% increase) and stagnation pressure recovery (2.4% increase) observed. Copyright © 2012 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The tomographic reconstruction of OH* chemiluminescence was performed on two interacting turbulent premixed bluff-body stabilized flames under steady flow conditions and acoustic excitation. These measurements elucidate the complex three-dimensional (3D) vortex-flame interactions which have previously not been accessible. The experiment was performed using a single camera and intensifier, with multiple views acquired by repositioning the camera, permitting calculation of the mean and phase-averaged volumetric OH* distributions. The reconstructed flame structure and phase-averaged dynamics are compared with OH planar laser-induced fluorescence and flame surface density measurements for the first time. The volumetric data revealed that the large-scale vortex-flame structures formed along the shear layers of each flame collide when the two flames meet, resulting in complex 3D flame structures in between the two flames. With a fairly simple experimental setup, it is shown that the tomographic reconstruction of OH* chemiluminescence in forced flames is a powerful tool that can yield important physical insights into large-scale 3D flame dynamics that are important in combustion instability. © 2013 IOP Publishing Ltd.
Resumo:
Through silicon via (TSV) technology is key for next generation three-dimensional integrated circuits, and carbon nanotubes (CNT) provide a promising alternative to metal for filling the TSV. Three catalyst preparation methods for achieving CNT growth from the bottom of the TSV are investigated. Compared with sputtering and evaporation, catalyst deposition using dip-coating in a FeCl2 solution is found to be a more efficient method for realizing a bottom-up filling of the TSV (aspect ratio 5 or 10) with CNT. The CNT bundles grown in 5 min exceed the 50 μm length of the TSV and are multi-wall CNT with three to eight walls. The CNT bundles inside the TSV were electrically characterized by creating a direct contact using a four-point nanoprober setup. A low resistance of the CNT bundle of 69.7 Ω (297 Ω) was measured when the CNT bundle was contacted midway along (over the full length of) the 25 μm deep TSV. The electrical characterization in combination with the good filling of the TSV demonstrates the potential use of CNT in fully integrated TSV applications.
Resumo:
Due to the Fermi-Dirac statistics of electrons the temporal correlations of tunneling events in a double barrier setup are typically negative. Here, we investigate the shot noise behavior of a system of two capacitively coupled quantum dot states by means of a Master equation model. In an asymmetric setup positive correlations in the tunneling current can arise due to the bunching of tunneling events. The underlying mechanism will be discussed in detail in terms of the current-current correlation function and the frequency-dependent Fano factor.
Resumo:
At the crossing between motor control neuroscience and robotics system theory, the paper presents a rhythmic experiment that is amenable both to handy laboratory implementation and simple mathematical modeling. The experiment is based on an impact juggling task, requiring the coordination of two upper-limb effectors and some phase-locking with the trajectories of one or several juggled objects. We describe the experiment, its implementation and the mathematical model used for the analysis. Our underlying research focuses on the role of sensory feedback in rhythmic tasks. In a robotic implementation of our experiment, we study the minimum feedback that is required to achieve robust control. A limited source of feedback, measuring only the impact times, is shown to give promising results. A second field of investigation concerns the human behavior in the same impact juggling task. We study how a variation of the tempo induces a transition between two distinct control strategies with different sensory feedback requirements. Analogies and differences between the robotic and human behaviors are obviously of high relevance in such a flexible setup. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
The paper considers the feedback stabilization of periodic orbits in a planar juggler. The juggler is "blind," i.e, he has no other sensing capabilities than the detection of impact times. The robustness analysis of the proposed control suggests that the arms acceleration at impact is a crucial design parameter even though it plays no role in the stability analysis. Analytical results and convergence proofs are provided for a simplified model of the juggler. The control law is then adapted to a more accurate model and validated in an experimental setup. © 2007 IEEE.
Resumo:
This paper presents details of the installation and performance of carbonated soil-MgO columns using a laboratory-scale model auger setup. MgO grout was mixed with the soil using the auger and the columns were then carbonated with gaseous CO2 introduced in two different ways: one using auger mixing and the other through a perforated plastic tube system inserted into the treated column. The performance of the columns in terms of unconfined compressive strength (UCS), stiffness, strain at failure and microstructure (using X-ray diffraction and scanning electron microscopy) showed that the soil-MgO columns were carbonated very quickly (in under 1 h) and yielded relatively high strength values, of 2.4-9.4 MPa, which on average were five times that of corresponding 28-day ambient cured uncarbonated columns. This confirmed, together with observations of dense microstructure and hydrated magnesium carbonates, that a good degree of carbonation had taken place. The results also showed that the carbonation method and period have a significant effect on the resulting performance, with the carbonation through the perforated pipe producing the best results. Copyright © 2013 by ASTM International.
Resumo:
The origin of the transient crosstalk (TC) in a phase-only LCOS based WSS using a Fourier transform setup was investigated and identified. Two methods were proposed to reduce the TC by at least 5dB without the need to modify the optics or electronics in use. © 2013 OSA.
Resumo:
The origin of the transient crosstalk (TC) in a phase-only LCOS based WSS using a Fourier transform setup was investigated and identified. Two methods were proposed to reduce the TC by at least 5dB without the need to modify the optics or electronics in use. © 2013 OSA.
Resumo:
The transient crosstalk in a phase-only liquid crystal on silicon (LCOS) based wavelength selective switch using a Fourier transform setup was investigated. Its origin was identified using an in situ test procedure and found to be related to the transient phase patterns displayed by the LCOS device during the switching. Two different methods were proposed to reduce the transient crosstalk without the need to modify the optics or electronics in use. Experimental results show both methods are able to reduce the worst-case transient crosstalk by at least 5 dB. © 1983-2013 IEEE.
Resumo:
Viscoelasticity and poroelasticity commonly coexist as time-dependent behaviors in polymer gels. Engineering applications often require knowledge of both behaviors separated; however, few methods exist to decouple viscoelastic and poroelastic properties of gels. We propose a method capable of separating viscoelasticity and poroelasticity of gels in various mechanical tests. The viscoelastic characteristic time and the poroelastic diffusivity of a gel define an intrinsic material length scale of the gel. The experimental setup gives a sample length scale, over which the solvent migrates in the gel. By setting the sample length to be much larger or smaller than the material length, the viscoelasticity and poroelasticity of the gel will dominate at different time scales in a test. Therefore, the viscoelastic and poroelastic properties of the gel can be probed separately at different time scales of the test. We further validate the method by finite-element models and stress-relaxation experiments. © 2014 The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg.
Resumo:
The authors present numerical simulations of ultrashort pulse generation by a technique of linear spectral broadening in phase modulators and compression in dispersion compensating fibre, followed by a further stage of soliton compression in dispersion shifted fibre. This laser system is predicted to generate pulses of 140 fs duration with a peak power of 1.5 kW over a wide, user selectable repetition rate range while maintaining consistent characteristics of stability and pulse quality. The use of fibre compressors and commercially available modulators is expected to make the system setup compact and cost-effective. © The Institution of Engineering and Technology 2014.
Resumo:
Physical connection and disconnection control has practical meanings for robot applications. Compared to conventional connection mechanisms, bonding involving a thermal process could provide high connection strength, high repeatability, and power-free connection maintenance, etc. In terms of disconnection, an established bond can be easily weakened with a temperature rise of the material used to form the bond. Hot melt adhesives (HMAs) are such material that can form adhesive bonds with any solid surfaces through a thermally induced solidification process. This paper proposes a novel control method for automatic connection and disconnection based on HMAs. More specifically, mathematical models are first established to describe the flowing behavior of HMAs at higher temperatures, as well as the temperature-dependent strength of an established HMA bond. These models are then validated with a specific type of HMA in a minimalistic robot setup equipped with two mechatronic devices for automated material handling. The validated models are eventually used for determining open parameters in a feedback controller for the robot to perform a pick-and-place task. Through a series of trials with different wooden and aluminum parts, we evaluate the performance of the automatic connection and disconnection methods in terms of speed, energy consumption, and robustness. © 1996-2012 IEEE.