933 resultados para sequencing batch reactors
Resumo:
The performance of two upflow anaerobic sludge blanket (UASB) reactors was evaluated in pilot scale (908 and 188 L), installed in series (R1 and R2), fed with swine wastewater with TSS around 5 and 13 g L-1. The UASB reactors were submitted to HDT of 36 and 18 h with VOL of 5.5 to 34.4 g COD (L d)-1 in the R1 and HDT of 7.5 e 3.7 h with VOL from 5.1 to 45.2 g COD (L d)-1 in the R2. The average removal efficiencies of COD ranged from 55 to 85% in the R1 and from 43 to 57% in the R2, resulting in values from 82 to 93% in the UASB reactors in two stage. Methane concentrations in the biogas were 69 to 74% with specific production from 0.05 to 0.27 L CH4 (g removedCOD)-1 in the R1 and of 0.10 to 0.12 L CH4 (g removedCOD)-1 in the R2. The average removal efficiencies were 61 to 75% for totalP, 39 to 69% for KN, 82 to 93% for orgN and 20 to 94% for Fe, Zn, Cu and Mn. The amN concentration were not reduced indicating the need to post-treatment for effluent disposal into water bodies. There were reductions of total coliforms from 99.8123 to 99.9989% and of thermotolerant coliforms from 99.9725 to 99.9999%. The conditions imposed to the UASB reactors in two stage provided high conversions of removedCOD into methane (up to 77%) and reductions of organic an inorganic pollution loads from swine wastewater.
Resumo:
This study aimed to evaluate the start-up of a horizontal anaerobic fixed bed reactor (HAFBR) followed by an upflow anaerobic sludge blanket (UASB) for the slaughterhouse wastewater treatment. HAFBR was filled with bamboo rings and had 1.2 m in length, 0.10 m in diameter and volume of 7.5 L. The UASB had the volume of 15 L. The HAFBR and UASB operated at organic loading rate and hydraulic retention time average of 8.46 and 3.77 kg m-3 d-1 of COD and 0.53 and 0.98 days, respectively. During 150 days of monitoring system it was found pH 6.8, relatively high values of bicarbonate alkalinity (> 1000 mg L-1) and reduced values of volatile acids (70 to 150 mg L-1), which afforded average removal efficiencies of COD total and total suspended solids of the order of 31 and 23% in HAFBR and 79% and 63% in UASB. It can be concluded that the generation and consumption of bicarbonate alkalinity and total volatile acids, thereby maintaining the pH during the study indicated stable operation of the reactors. The COD removal in the reactors was satisfactory especially when it considers that the assessment was conducted in a period of adaptation of organisms to the effluent and also the high organic load applied during this period.
Resumo:
This report summarizes the work done by a consortium consisting of Lappeenranta University of Technology, Aalto University and VTT Technical Research Centre of Finland in the New Type Nuclear Reactors (NETNUC) project during 2008–2011. The project was part of the Sustainable Energy (SusEn) research programme of the Academy of Finland. A wide range of generation IV nuclear technologies were studied during the project and the research consisted of multiple tasks. This report contains short articles summarizing the results of the individual tasks. In addition, the publications produced and the persons involved in the project are listed in the appendices.
Resumo:
Nineteen isolates of bovine viral diarrhea virus (BVDV) from Brazil were genetically characterized through partial nucleotide sequencing and analysis of the 5'UTR region. The isolates were grouped as BVDV-1 (11/19), BVDV-2 (6/19) or "atypical" pestivirus (2/19). Among the BVDV-1, eight isolates were classified as subgenotype BVDV-1a, whereas most (4 out of 6) BVDV-2 belonged to subgenotype 2b. Two isolates from aborted fetuses were not classified into any genetic group, being considered atypical BVDVs. Genetic diversity among Brazilian BVDV isolates may be responsible for vaccination and diag-nostic failure and therefore may influence the control strategies for BVDV infection in the country.
Resumo:
The hypoferremia that is observed during systemic inflammatory processes is mediated by hepcidin, which is a peptide that is mainly synthesized in the livers of several mammalian species. Hepcidin plays a key role in iron metabolism and in the innate immune system. It's up-regulation is particularly useful during acute inflammation, and it restricts the iron availability that is necessary for the growth of pathogenic microorganisms. In this study, the hepcidin mRNA of Equus asinus has been characterized, and the expression of donkey hepcidin in the liver has been determined. The donkey hepcidin sequence has an open reading frame (ORF) of 261 nucleotides, and the deduced corresponding protein sequence has 86 amino acids. The amino acid sequence of donkey hepcidin was most homologous to Equus caballus (98%). The mature donkey hepcidin sequence (25 amino acids) was 100% homologous to the equine mature hepcidin and has eight conserved cysteine residues that are found in all of the investigated hepcidin sequences. The expression profile of donkey hepcidin in the liver was high and was similar to the reference gene expression. The donkey hepcidin sequence was deposited in GenBankTM (HQ902884) and may be useful for additional studies on iron metabolism and the inflammatory process in this species.
Resumo:
Identification of Escherichia coli requires knowledge regarding the prevalent serotypes and virulence factors profiles allows the classification in pathogenic/non-pathogenic. However, some of these bacteria do not express flagellar antigen invitro. In this case the PCR-restriction fragment length polymorphism (RFLP-PCR) and sequencing of the fliC may be suitable for the identification of antigens by replacing the traditional serology. We studied 17 samples of E. coli isolated from animals and presenting antigen H nontypeable (HNT). The H antigens were characterized by PCR-RFLP and sequencing of fliC gene. Three new flagellin genes were identified, for which specific antisera were obtained. The PCR-RFLP was shown to be faster than the serotyping H antigen in E. coli, provided information on some characteristics of these antigens and indicated the presence of new genes fliC.
Resumo:
Detta arbete fokuserar på modellering av katalytiska gas-vätskereaktioner som genomförs i kontinuerliga packade bäddar. Katalyserade gas-vätskereaktioner hör till de mest typiska reaktionerna i kemisk industri; därför behandlas här packade bäddreaktorer som ett av de populäraste alternativen, då kontinuerlig drift eftersträvas. Tack vare en stor katalysatormängd per volym har de en kompakt struktur, separering av katalysatorn behövs inte och genom en professionell design kan den mest fördelaktiga strömningsbilden upprätthållas i reaktorn. Packade bäddreaktorer är attraktiva p.g.a. lägre investerings- och driftskostnader. Även om packade bäddar används intensivt i industri, är det mycket utmanande att modellera. Detta beror på att tre faser samexisterar och systemets geometri är komplicerad. Existensen av flera reaktioner gör den matematiska modelleringen även mera krävande. Många förenklingar blir därmed nödvändiga. Modellerna involverar typiskt flera parametrar som skall justeras på basis av experimentella data. I detta arbete studerades fem olika reaktionssystem. Systemen hade studerats experimentellt i vårt laboratorium med målet att nå en hög produktivitet och selektivitet genom ett optimalt val av katalysatorer och driftsbetingelser. Hydrering av citral, dekarboxylering av fettsyror, direkt syntes av väteperoxid samt hydrering av sockermonomererna glukos och arabinos användes som exempelsystem. Även om dessa system hade mycket gemensamt, hade de också unika egenskaper och krävde därför en skräddarsydd matematisk behandling. Citralhydrering var ett system med en dominerande huvudreaktion som producerar citronellal och citronellol som huvudprodukter. Produkterna används som en citrondoftande komponent i parfymer, tvålar och tvättmedel samt som plattform-kemikalier. Dekarboxylering av stearinsyra var ett specialfall, för vilket en reaktionsväg för produktion av långkedjade kolväten utgående från fettsyror söktes. En synnerligen hög produktselektivitet var karakteristisk för detta system. Även processuppskalning modellerades för dekarboxylerings-reaktionen. Direkt syntes av väteperoxid hade som målsättning att framta en förenklad process att producera väteperoxid genom att låta upplöst väte och syre reagera direkt i ett lämpligt lösningsmedel på en aktiv fast katalysator. I detta system förekommer tre bireaktioner, vilka ger vatten som oönskad produkt. Alla dessa tre reaktioner modellerades matematiskt med hjälp av dynamiska massbalanser. Målet med hydrering av glukos och arabinos är att framställa produkter med en hög förädlingsgrad, nämligen sockeralkoholer, genom katalytisk hydrering. För dessa två system löstes ämnesmängd- och energibalanserna simultant för att evaluera effekter inne i porösa katalysatorpartiklar. Impulsbalanser som bestämmer strömningsbetingelser inne i en kemisk reaktor, ersattes i alla modelleringsstudier med semi-empiriska korrelationsuttryck för vätskans volymandel och tryckförlust och med axiell dispersionsmodell för beskrivning av omblandningseffekter. Genom att justera modellens parametrar kunde reaktorns beteende beskrivas väl. Alla experiment var genomförda i laboratorieskala. En stor mängd av kopplade effekter samexisterade: reaktionskinetik inklusive adsorption, katalysatordeaktivering, mass- och värmeöverföring samt strömningsrelaterade effekter. En del av dessa effekter kunde studeras separat (t.ex. dispersionseffekter och bireaktioner). Inverkan av vissa fenomen kunde ibland minimeras genom en noggrann planering av experimenten. På detta sätt kunde förenklingar i modellerna bättre motiveras. Alla system som studerades var industriellt relevanta. Utveckling av nya, förenklade produktionsteknologier för existerande kemiska komponenter eller nya komponenter är ett gigantiskt uppdrag. Studierna som presenterades här fokuserade på en av den teknisk-vetenskapliga utfärdens första etapper.
Resumo:
Recently, Small Modular Reactors (SMRs) have attracted increased public discussion. While large nuclear power plant new build projects are facing challenges, the focus of attention is turning to small modular reactors. One particular project challenge arises in the area of nuclear licensing, which plays a significant role in new build projects affecting their quality as well as costs and schedules. This dissertation - positioned in the field of nuclear engineering but also with a significant section in the field of systems engineering - examines the nuclear licensing processes and their suitability for the characteristics of SMRs. The study investigates the licensing processes in selected countries, as well as other safety critical industry fields. Viewing the licensing processes and their separate licensing steps in terms of SMRs, the study adopts two different analysis theories for review and comparison. The primary data consists of a literature review, semi-structured interviews, and questionnaire responses concerning licensing processes and practices. The result of the study is a recommendation for a new, optimized licensing process for SMRs. The most important SMR-specific feature, in terms of licensing, is the modularity of the design. Here the modularity indicates multi-module SMR designs, which creates new challenges in the licensing process. As this study focuses on Finland, the main features of the new licensing process are adapted to the current Finnish licensing process, aiming to achieve the main benefits with minimal modifications to the current process. The application of the new licensing process is developed using Systems Engineering, Requirements Management, and Project Management practices and tools. Nuclear licensing includes a large amount of data and documentation which needs to be managed in a suitable manner throughout the new build project and then during the whole life cycle of the nuclear power plant. To enable a smooth licensing process and therefore ensure the success of the new build nuclear power plant project, management processes and practices play a significant role. This study contributes to the theoretical understanding of how licensing processes are structured and how they are put into action in practice. The findings clarify the suitability of different licensing processes and their selected licensing steps for SMR licensing. The results combine the most suitable licensing steps into a new licensing process for SMRs. The results are also extended to the concept of licensing management practices and tools.
Resumo:
The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.
Resumo:
The sustainable management of municipal solid waste in the Kathmandu Valley has always been a challenging task. Solid waste generation has gone rapidly high in the Kathmandu Valley over the last decade due to booming population and rapid urbaniza-tion. Finding appropriate landfill sites for the disposal of solid wastes generated from the households of the Kathmandu Valley has always been a major problem for Nepalese government. 65 % of total generated wastes from the households of Nepal consist of organic materials. As large fractions of generated household wastes are organic in na-ture, composting can be considered as one of the best sustainable ways to recycle organ-ic wastes generated from the households of Nepal. Model Community Society Development (MCDS), a non-governmental organization of Nepal carried out its small-scale project in five households of the Kathmandu Valley by installing composting reactors. This thesis is based on this small-scale project and has used secondary data provided by MCDS Nepal for carrying out the study. Proper man-agement of organic wastes can be done at household levels through the use of compost-ing reactors. The end product compost can be used as soil conditioners for agricultural purposes such as organic farming, roof-top farming and gardening. The overall average organic waste generation in the Kathmandu Valley is found to be 0,23 kg/person/day and the total amount of organic household wastes generated in the Kathmandu Valley is around 210 Gg/yr. Produced composts from five composting reac-tors contain high amount of moistures but have sufficient amount of nutrients required for the fertility of land and plant growth. Installation of five composting reactors in five households have prevented 2,74 Mg of organic wastes going into the landfills, thus re-ducing 107 kg of methane emissions which is equivalent to 2,7 Mg of carbondioxide.
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
A 40-kb DNA region containing the major cluster of nif genes has been isolated from the Azospirillum brasilense Sp7 genome. In this region three nif operons have been identified: nifHDKorf1Y, nifENXorf3orf5fdxAnifQ and orf2nifUSVorf4. The operons containing nifENX and nifUSV genes are separated from the structural nifHDKorf1Y operon by about 5 kb and 10 kb, respectively. The present study shows the sequence analysis of the 6045-bp DNA region containing the nifENX genes. The deduced amino acid sequences from the open reading frames were compared to the nif gene products of other diazotrophic bacteria and indicate the presence of seven ORFs, all reading in the same direction as that of the nifHDKorf1Y operon. Consensus sigma54 and NifA-binding sites are present only in the promoter region upstream of the nifE gene. This promoter is activated by NifA protein and is approximately two-times less active than the nifH promoter, as indicated by the ß-galactosidase assays. This result suggests the differential expression of the nif genes and their respective products in Azospirillum.
Resumo:
In this thesis, stepwise titration with hydrochloric acid was used to obtain chemical reactivities and dissolution rates of ground limestones and dolostones of varying geological backgrounds (sedimentary, metamorphic or magmatic). Two different ways of conducting the calculations were used: 1) a first order mathematical model was used to calculate extrapolated initial reactivities (and dissolution rates) at pH 4, and 2) a second order mathematical model was used to acquire integrated mean specific chemical reaction constants (and dissolution rates) at pH 5. The calculations of the reactivities and dissolution rates were based on rate of change of pH and particle size distributions of the sample powders obtained by laser diffraction. The initial dissolution rates at pH 4 were repeatedly higher than previously reported literature values, whereas the dissolution rates at pH 5 were consistent with former observations. Reactivities and dissolution rates varied substantially for dolostones, whereas for limestones and calcareous rocks, the variation can be primarily explained by relatively large sample standard deviations. A list of the dolostone samples in a decreasing order of initial reactivity at pH 4 is: 1) metamorphic dolostones with calcite/dolomite ratio higher than about 6% 2) sedimentary dolostones without calcite 3) metamorphic dolostones with calcite/dolomite ratio lower than about 6% The reactivities and dissolution rates were accompanied by a wide range of experimental techniques to characterise the samples, to reveal how different rocks changed during the dissolution process, and to find out which factors had an influence on their chemical reactivities. An emphasis was put on chemical and morphological changes taking place at the surfaces of the particles via X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Supporting chemical information was obtained with X-Ray Fluorescence (XRF) measurements of the samples, and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) measurements of the solutions used in the reactivity experiments. Information on mineral (modal) compositions and their occurrence was provided by X-Ray Diffraction (XRD), Energy Dispersive X-ray analysis (EDX) and studying thin sections with a petrographic microscope. BET (Brunauer, Emmet, Teller) surface areas were determined from nitrogen physisorption data. Factors increasing chemical reactivity of dolostones and calcareous rocks were found to be sedimentary origin, higher calcite concentration and smaller quartz concentration. Also, it is assumed that finer grain size and larger BET surface areas increase the reactivity although no certain correlation was found in this thesis. Atomic concentrations did not correlate with the reactivities. Sedimentary dolostones, unlike metamorphic ones, were found to have porous surface structures after dissolution. In addition, conventional (XPS) and synchrotron based (HRXPS) X-ray Photoelectron Spectroscopy were used to study bonding environments on calcite and dolomite surfaces. Both samples are insulators, which is why neutralisation measures such as electron flood gun and a conductive mask were used. Surface core level shifts of 0.7 ± 0.1 eV for Ca 2p spectrum of calcite and 0.75 ± 0.05 eV for Mg 2p and Ca 3s spectra of dolomite were obtained. Some satellite features of Ca 2p, C 1s and O 1s spectra have been suggested to be bulk plasmons. The origin of carbide bonds was suggested to be beam assisted interaction with hydrocarbons found on the surface. The results presented in this thesis are of particular importance for choosing raw materials for wet Flue Gas Desulphurisation (FGD) and construction industry. Wet FGD benefits from high reactivity, whereas construction industry can take advantage of slow reactivity of carbonate rocks often used in the facades of fine buildings. Information on chemical bonding environments may help to create more accurate models for water-rock interactions of carbonates.
Resumo:
Bovine coronavirus (BCoV) causes severe diarrhea in newborn calves, is associated with winter dysentery in adult cattle and respiratory infections in calves and feedlot cattle. The BCoV S protein plays a fundamental role in viral attachment and entry into the host cell, and is cleaved into two subunits termed S1 (amino terminal) and S2 (carboxy terminal). The present study describes a strategy for the sequencing of the BCoV S1 gene directly from fecal diarrheic specimens that were previously identified as BCoV positive by RT-PCR assay for N gene detection. A consensus sequence of 2681 nucleotides was obtained through direct sequencing of seven overlapping PCR fragments of the S gene. The samples did not undergo cell culture passage prior to PCR amplification and sequencing. The structural analysis was based on the genomic differences between Brazilian strains and other known BCoV from different geographical regions. The phylogenetic analysis of the entire S1 gene showed that the BCoV Brazilian strains were more distant from the Mebus strain (97.8% identity for nucleotides and 96.8% identity for amino acids) and more similar to the BCoV-ENT strain (98.7% for nucleotides and 98.7% for amino acids). Based on the phylogenetic analysis of the hypervariable region of the S1 subunit, these strains clustered with the American (BCoV-ENT, 182NS) and Canadian (BCQ20, BCQ2070, BCQ9, BCQ571, BCQ1523) calf diarrhea and the Canadian winter dysentery (BCQ7373, BCQ2590) strains, but clustered on a separate branch of the Korean and respiratory BCoV strains. The BCoV strains of the present study were not clustered in the same branch of previously published Brazilian strains (AY606193, AY606194). These data agree with the genealogical construction and suggest that at least two different BCoV strains are circulating in Brazil.