965 resultados para semi-empirical modeling
Resumo:
The Persian Gulf (PG) is a semi-enclosed shallow sea which is connected to open ocean through the Strait of Hormuz. Thermocline as a suddenly decrease of temperature in subsurface layer in water column leading to stratification happens in the PG seasonally. The forcing comprise tide, river inflow, solar radiation, evaporation, northwesterly wind and water exchange with the Oman Sea that influence on this process. In this research, analysis of the field data and a numerical (Princeton Ocean Model, POM) study on the summer thermocline development in the PG are presented. The Mt. Mitchell cruise 1992 salinity and temperature observations show that the thermocline is effectively removed due to strong wind mixing and lower solar radiation in winter but is gradually formed and developed during spring and summer; in fact as a result of an increase in vertical convection through the water in winter, vertical gradient of temperature is decreased and thermocline is effectively removed. Thermocline development that evolves from east to west is studied using numerical simulation and some existing observations. Results show that as the northwesterly wind in winter, at summer transition period, weakens the fresher inflow from Oman Sea, solar radiation increases in this time interval; such these factors have been caused the thermocline to be formed and developed from winter to summer even over the northwestern part of the PG. The model results show that for the more realistic monthly averaged wind experiments the thermocline develops as is indicated by summer observations. The formation of thermocline also seems to decrease the dissolved oxygen in water column due to lack of mixing as a result of induced stratification. Over most of PG the temperature difference between surface and subsurface increases exponentially from March until May. Similar variations for salinity differences are also predicted, although with smaller values than observed. Indeed thermocline development happens more rapidly in the Persian Gulf from spring to summer. Vertical difference of temperature increases to 9 centigrade degrees in some parts of the case study zone from surface to bottom in summer. Correlation coefficients of temperature and salinity between the model results and measurements have been obtained 0.85 and 0.8 respectively. The rate of thermcline development was found to be between 0.1 to 0.2 meter per day in the Persian Gulf during the 6 months from winter to early summer. Also it is resulted from the used model that turbulence kinetic energy increases in the northwestern part of the PG from winter to early summer that could be due to increase in internal waves activities and stability intensified through water column during this time.
Resumo:
Investigation of large, destructive earthquakes is challenged by their infrequent occurrence and the remote nature of geophysical observations. This thesis sheds light on the source processes of large earthquakes from two perspectives: robust and quantitative observational constraints through Bayesian inference for earthquake source models, and physical insights on the interconnections of seismic and aseismic fault behavior from elastodynamic modeling of earthquake ruptures and aseismic processes.
To constrain the shallow deformation during megathrust events, we develop semi-analytical and numerical Bayesian approaches to explore the maximum resolution of the tsunami data, with a focus on incorporating the uncertainty in the forward modeling. These methodologies are then applied to invert for the coseismic seafloor displacement field in the 2011 Mw 9.0 Tohoku-Oki earthquake using near-field tsunami waveforms and for the coseismic fault slip models in the 2010 Mw 8.8 Maule earthquake with complementary tsunami and geodetic observations. From posterior estimates of model parameters and their uncertainties, we are able to quantitatively constrain the near-trench profiles of seafloor displacement and fault slip. Similar characteristic patterns emerge during both events, featuring the peak of uplift near the edge of the accretionary wedge with a decay toward the trench axis, with implications for fault failure and tsunamigenic mechanisms of megathrust earthquakes.
To understand the behavior of earthquakes at the base of the seismogenic zone on continental strike-slip faults, we simulate the interactions of dynamic earthquake rupture, aseismic slip, and heterogeneity in rate-and-state fault models coupled with shear heating. Our study explains the long-standing enigma of seismic quiescence on major fault segments known to have hosted large earthquakes by deeper penetration of large earthquakes below the seismogenic zone, where mature faults have well-localized creeping extensions. This conclusion is supported by the simulated relationship between seismicity and large earthquakes as well as by observations from recent large events. We also use the modeling to connect the geodetic observables of fault locking with the behavior of seismicity in numerical models, investigating how a combination of interseismic geodetic and seismological estimates could constrain the locked-creeping transition of faults and potentially their co- and post-seismic behavior.
Resumo:
116 p.
Resumo:
For the past three decades the automotive industry is facing two main conflicting challenges to improve fuel economy and meet emissions standards. This has driven the engineers and researchers around the world to develop engines and powertrain which can meet these two daunting challenges. Focusing on the internal combustion engines there are very few options to enhance their performance beyond the current standards without increasing the price considerably. The Homogeneous Charge Compression Ignition (HCCI) engine technology is one of the combustion techniques which has the potential to partially meet the current critical challenges including CAFE standards and stringent EPA emissions standards. HCCI works on very lean mixtures compared to current SI engines, resulting in very low combustion temperatures and ultra-low NOx emissions. These engines when controlled accurately result in ultra-low soot formation. On the other hand HCCI engines face a problem of high unburnt hydrocarbon and carbon monoxide emissions. This technology also faces acute combustion controls problem, which if not dealt properly with yields highly unfavorable operating conditions and exhaust emissions. This thesis contains two main parts. One part deals in developing an HCCI experimental setup and the other focusses on developing a grey box modelling technique to control HCCI exhaust gas emissions. The experimental part gives the complete details on modification made on the stock engine to run in HCCI mode. This part also comprises details and specifications of all the sensors, actuators and other auxiliary parts attached to the conventional SI engine in order to run and monitor the engine in SI mode and future SI-HCCI mode switching studies. In the latter part around 600 data points from two different HCCI setups for two different engines are studied. A grey-box model for emission prediction is developed. The grey box model is trained with the use of 75% data and the remaining data is used for validation purpose. An average of 70% increase in accuracy for predicting engine performance is found while using the grey-box over an empirical (black box) model during this study. The grey-box model provides a solution for the difficulty faced for real time control of an HCCI engine. The grey-box model in this thesis is the first study in literature to develop a control oriented model for predicting HCCI engine emissions for control.
Resumo:
Il presente elaborato esplora l’attitudine delle organizzazioni nei confronti dei processi di business che le sostengono: dalla semi-assenza di struttura, all’organizzazione funzionale, fino all’avvento del Business Process Reengineering e del Business Process Management, nato come superamento dei limiti e delle problematiche del modello precedente. All’interno del ciclo di vita del BPM, trova spazio la metodologia del process mining, che permette un livello di analisi dei processi a partire dagli event data log, ossia dai dati di registrazione degli eventi, che fanno riferimento a tutte quelle attività supportate da un sistema informativo aziendale. Il process mining può essere visto come naturale ponte che collega le discipline del management basate sui processi (ma non data-driven) e i nuovi sviluppi della business intelligence, capaci di gestire e manipolare l’enorme mole di dati a disposizione delle aziende (ma che non sono process-driven). Nella tesi, i requisiti e le tecnologie che abilitano l’utilizzo della disciplina sono descritti, cosi come le tre tecniche che questa abilita: process discovery, conformance checking e process enhancement. Il process mining è stato utilizzato come strumento principale in un progetto di consulenza da HSPI S.p.A. per conto di un importante cliente italiano, fornitore di piattaforme e di soluzioni IT. Il progetto a cui ho preso parte, descritto all’interno dell’elaborato, ha come scopo quello di sostenere l’organizzazione nel suo piano di improvement delle prestazioni interne e ha permesso di verificare l’applicabilità e i limiti delle tecniche di process mining. Infine, nell’appendice finale, è presente un paper da me realizzato, che raccoglie tutte le applicazioni della disciplina in un contesto di business reale, traendo dati e informazioni da working papers, casi aziendali e da canali diretti. Per la sua validità e completezza, questo documento è stata pubblicato nel sito dell'IEEE Task Force on Process Mining.
Resumo:
Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite’s Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.
Resumo:
This study analyzes the manifestation of the dimensions of Entrepreneurial Orientation (EO) and Project Management Systems (PMS). We used a qualitative approach to conduct exploratory research through a study in literature and a pilot case in a software company. Data was collected from semi structured interviews, documents, and records on file, then triangulated and treated with content analysis. The model proposed for the relationship between the types of PMS (ad hoc, Classic PM, innovation, entrepreneurship/intrapreneurship) and the dimensions of EO (innovativeness, risk-taking, proactiveness, competitive aggressiveness, and autonomy), was partially corroborated by empirical studies. New studies are suggested to validate the applicability and setup of the model.
An empirical investigation of the impact of global energy transition on Nigerian oil and gas exports
Resumo:
18 months embargo on the thesis and check appendix for copy right materials
Resumo:
There are different ideas when it comes to the use of either Swedish or English during EFL lessons. Therefore, the aim of this study was to investigate teachers’ choice of language in the upper elementary EFL classroom in Swedish schools and their arguments for the use of one or the other. In order to find out which language different teachers use and why, semi-structured interviews with six different teachers were carried out. All respondents were currently teaching English in grade 4-6. The results of the study show that the teachers’ most commonly used language in the EFL classroom is English. However, several of the teachers mention that they also use Swedish, for example when it comes to explaining difficult instructions or grammar. All teachers participating in this study mention the importance of hearing and using English in order for the pupils to learn English and therefore they try to use mostly English. Nevertheless, this study only has six participants, all living in the same county and working at schools with many similarities, which makes it difficult to draw any generalizable conclusions. To be able to draw better conclusions, a study would have to be conducted with more participants within a larger area.
Resumo:
Copyright markets, it is said, are ‘winner takes all’ markets favouring the interests of corporate investors over the interests of primary creators. However, little is known about popular music creators’ ‘lived experience’ of copyright. This thesis interrogates key aspects of copyright transactions between creators and investors operating in the UK music industries using analysis of various copyright related documents and semi-structured interviews with creators and investors. The research found considerable variety in the types of ‘deal’ creators enter into and considerable divergence in the potential rewards. It was observed that new-entrant creators have little comprehension of the basic tenets of copyright, but with experience they become more ‘copyright aware’. Documentary and interview evidence reveals creators routinely assign copyright to third party investors for the full term of copyright in sound recordings: the justification for this is questionable. An almost inevitable consequence of this asymmetry of understanding of copyright and asymmetry of bargaining power is that creators become alienated from their copyright works. The empirical evidence presented here supports historic and contemporary calls for a statutory mechanism limiting the maximum copyright assignment period to ten-years.
Resumo:
Conventional web search engines are centralised in that a single entity crawls and indexes the documents selected for future retrieval, and the relevance models used to determine which documents are relevant to a given user query. As a result, these search engines suffer from several technical drawbacks such as handling scale, timeliness and reliability, in addition to ethical concerns such as commercial manipulation and information censorship. Alleviating the need to rely entirely on a single entity, Peer-to-Peer (P2P) Information Retrieval (IR) has been proposed as a solution, as it distributes the functional components of a web search engine – from crawling and indexing documents, to query processing – across the network of users (or, peers) who use the search engine. This strategy for constructing an IR system poses several efficiency and effectiveness challenges which have been identified in past work. Accordingly, this thesis makes several contributions towards advancing the state of the art in P2P-IR effectiveness by improving the query processing and relevance scoring aspects of a P2P web search. Federated search systems are a form of distributed information retrieval model that route the user’s information need, formulated as a query, to distributed resources and merge the retrieved result lists into a final list. P2P-IR networks are one form of federated search in routing queries and merging result among participating peers. The query is propagated through disseminated nodes to hit the peers that are most likely to contain relevant documents, then the retrieved result lists are merged at different points along the path from the relevant peers to the query initializer (or namely, customer). However, query routing in P2P-IR networks is considered as one of the major challenges and critical part in P2P-IR networks; as the relevant peers might be lost in low-quality peer selection while executing the query routing, and inevitably lead to less effective retrieval results. This motivates this thesis to study and propose query routing techniques to improve retrieval quality in such networks. Cluster-based semi-structured P2P-IR networks exploit the cluster hypothesis to organise the peers into similar semantic clusters where each such semantic cluster is managed by super-peers. In this thesis, I construct three semi-structured P2P-IR models and examine their retrieval effectiveness. I also leverage the cluster centroids at the super-peer level as content representations gathered from cooperative peers to propose a query routing approach called Inverted PeerCluster Index (IPI) that simulates the conventional inverted index of the centralised corpus to organise the statistics of peers’ terms. The results show a competitive retrieval quality in comparison to baseline approaches. Furthermore, I study the applicability of using the conventional Information Retrieval models as peer selection approaches where each peer can be considered as a big document of documents. The experimental evaluation shows comparative and significant results and explains that document retrieval methods are very effective for peer selection that brings back the analogy between documents and peers. Additionally, Learning to Rank (LtR) algorithms are exploited to build a learned classifier for peer ranking at the super-peer level. The experiments show significant results with state-of-the-art resource selection methods and competitive results to corresponding classification-based approaches. Finally, I propose reputation-based query routing approaches that exploit the idea of providing feedback on a specific item in the social community networks and manage it for future decision-making. The system monitors users’ behaviours when they click or download documents from the final ranked list as implicit feedback and mines the given information to build a reputation-based data structure. The data structure is used to score peers and then rank them for query routing. I conduct a set of experiments to cover various scenarios including noisy feedback information (i.e, providing positive feedback on non-relevant documents) to examine the robustness of reputation-based approaches. The empirical evaluation shows significant results in almost all measurement metrics with approximate improvement more than 56% compared to baseline approaches. Thus, based on the results, if one were to choose one technique, reputation-based approaches are clearly the natural choices which also can be deployed on any P2P network.
Resumo:
This paper is on modeling and simulation for an offshore wind system equipped with a semi-submersible floating platform, a wind turbine, a permanent magnet synchronous generator, a multiple point clamped four level or five level full-power converter, a submarine cable and a second order filter. The drive train is modeled by three mass model considering the resistant stiffness torque, structure and tower in deep water due to the moving surface elevation. The system control uses PWM by space vector modulation associated with sliding mode and proportional integral controllers. The electric energy is injected into the electric grid either by an alternated current link or by a direct current link. The model is intend to be a useful tool for unveil the behavior and performance of the offshore wind system, especially for the multiple point clamped full-power converter, under normal operation or under malfunctions.
Resumo:
This work aims to study the application of Genetic Algorithms in anaerobic digestion modeling, in particular when using dynamical models. Along the work, different types of bioreactors are shown, such as batch, semi-batch and continuous, as well as their mathematical modeling. The work intendeds to estimate the parameter values of two biological reaction model. For that, simulated results, where only one output variable, the produced biogas, is known, are fitted to the model results. For this reason, the problems associated with reverse optimization are studied, using some graphics that provide clues to the sensitivity and identifiability associated with the problem. Particular solutions obtained by the identifiability analysis using GENSSI and DAISY softwares are also presented. Finally, the optimization is performed using genetic algorithms. During this optimization the need to improve the convergence of genetic algorithms was felt. This need has led to the development of an adaptation of the genetic algorithms, which we called Neighbored Genetic Algorithms (NGA1 and NGA2). In order to understand if this new approach overcomes the Basic Genetic Algorithms (BGA) and achieves the proposed goals, a study of 100 full optimization runs for each situation was further developed. Results show that NGA1 and NGA2 are statistically better than BGA. However, because it was not possible to obtain consistent results, the Nealder-Mead method was used, where the initial guesses were the estimated results from GA; Algoritmos Evolucionários para a Modelação de Bioreactores Resumo: Neste trabalho procura-se estudar os algoritmos genéticos com aplicação na modelação da digestão anaeróbia e, em particular, quando se utilizam modelos dinâmicos. Ao longo do mesmo, são apresentados diferentes tipos de bioreactores, como os batch, semi-batch e contínuos, bem como a modelação matemática dos mesmos. Neste trabalho procurou-se estimar o valor dos parâmetros que constam num modelo de digestão anaeróbia para o ajustar a uma situação simulada onde apenas se conhece uma variável de output, o biogas produzido. São ainda estudados os problemas associados à optimização inversa com recurso a alguns gráficos que fornecem pistas sobre a sensibilidade e identifiacabilidade associadas ao problema da modelação da digestão anaeróbia. São ainda apresentadas soluções particulares de idenficabilidade obtidas através dos softwares GENSSI e DAISY. Finalmente é realizada a optimização do modelo com recurso aos algoritmos genéticos. No decorrer dessa optimização sentiu-se a necessidade de melhorar a convergência e, portanto, desenvolveu-se ainda uma adaptação dos algoritmos genéticos a que se deu o nome de Neighboured Genetic Algorithms (NGA1 e NGA2). No sentido de se compreender se as adaptações permitiam superar os algoritmos genéticos básicos e atingir as metas propostas, foi ainda desenvolvido um estudo em que o processo de optimização foi realizado 100 vezes para cada um dos métodos, o que permitiu concluir, estatisticamente, que os BGA foram superados pelos NGA1 e NGA2. Ainda assim, porque não foi possivel obter consistência nos resultados, foi usado o método de Nealder-Mead utilizado como estimativa inicial os resultados obtidos pelos algoritmos genéticos.
Resumo:
Vaults are an architectural element which during construction history have been built with a great variety of different materials, shapes, and sizes. The shape of these structural elements was often dependent by the necessity to cover complex spaces, by the needed loading capacity, or by architectural aesthetics. Within this complex scenario masonry patterns generates also different effects on loading capacity, load percolation and stiffness of the structure. These effects were been extensively investigated, both with empirical observations and with modern numerical methods. While most of them focus on analyzing the load bearing capacity or the texture effect on vaulted structures, the aim of this analysis is to investigate on the effects of the variation of a single structural characteristic on the load percolation in the vault. Moreover, an additional purpose of the work is related to the coding of a parametrical model aiming at generating different masonry vaulted structures. Nevertheless, proposed script can generate different typology of vaulted structure basing on some structural characteristics, such as the span and the length to cover and the dimensions of the blocks.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.