859 resultados para selective modification
Resumo:
Many audio watermarking schemes divide the audio signal into several blocks such that part of the watermark is embedded into each of them. One of the key issues in these block-oriented watermarking schemes is to preserve the synchronisation, i.e. to recover the exact position of each block in the mark recovery process. In this paper, a novel time domain synchronisation technique is presented together with a new blind watermarking scheme which works in the Discrete Fourier Transform (DFT or FFT) domain. The combined scheme provides excellent imperceptibility results whilst achieving robustness against typical attacks. Furthermore, the execution of the scheme is fast enough to be used in real-time applications. The excellent transparency of the embedding algorithm makes it particularly useful for professional applications, such as the embedding of monitoring information in broadcast signals. The scheme is also compared with some recent results of the literature.
Resumo:
Malignant pleural mesothelioma (MPM) is increasingly observed in industrial countries. Despite concerted efforts and combined treatments including surgery, chemotherapy and irradiation patients eventually succumb from relentless local progression of the disease. Recent publications have demonstrated an improved response rate with the cytostatic agent pemetrexed which will be tested in a neoadjuvant setting followed by surgery. However, effective tumor control requires new loco-regional treatment modalities, eventually in combination with neoadjuvant chemotherapy. Intraoperative photodynamic therapy (PDT) of the chest cavity has been proposed as an attractive treatment concept for MPM since a selective treatment of the tumor bed following resection has the potential to improve local tumor control. It has been shown to afford tumor destruction in patients with mesothelioma but efficiency and selectivity is not yet sufficient for routine clinical application. Experimental work on MPM has shown that tumor selectivity of PDT depend on treatment conditions and can be improved by structural modification and improved targeting of the sensitizers. Refinements of PDT for mesothelioma will depend on a more detailed understanding of the pathways for preferential sensitizer accumulation within the tumor as well as on synergistic effects between PDT and chemotherapeutic agents.
Resumo:
[Abstract]
Resumo:
abstract:occasional Adnominal Idiom Modification - A Cognitive Linguistic Approach From a cognitive-linguistic perspective, this paper explores alternative types of adnoniinal modification in occasional variants of English verbal idioms. Being discussed against data extracted from the British National Corpiis (BNC), the model claims that in idioni-production idiomatic constructions are activated as complex linguistic schemas to code a context-specific target-conceptualisation. Adnominal pre- and postmodifications are one specific form of creative alteration to adapt the idiom for this purpose. Semantically, idiom-interna1 NPextension is not a uniforni process. It is necessary to distinguish two systematic types of adnominal modification: external and internal modification (Ernst 1981). While external NPmodification has adverbial function, ¡.e. it modifies the idiom as a unit, internal modification directly applies to the head-noun and thus depends on the degree of motivation and analysability of a given idiom. Following the cognitive-linguistic framework, these dimensions of idiom-transparency result from the language user's ability to remotivate the bipartite semantic structure by conceptual metaphors and metonymies.
Resumo:
OBJECTIVE: Bench evaluation of the hydrodynamic behavior of venous cannulas is a valuable technique for the analysis of their performance during cardiopulmonary bypass (CPB). The aim of this study was to investigate the effect of the internal diameter of the extracorporeal connecting tube of venous cannulas on flow rate (Q), pressure drop (delta P), and cannula resistance (delta P/Q²) values, using a computer assisted test bench.¦METHODS: An in vitro circuit was set up with silicone tubing between the test cannula encased in a movable reservoir, and a static reservoir. The delta P, defined as the difference between the drainage pressure and the preload pressure, was measured using high-fidelity Millar pressure transducers. Q was measured using an ultrasonic flowmeter. Data display and data recording were controlled using virtual instruments in a stepwise fashion.¦RESULTS: The 27 F smartcanula® with a 9 mm connecting tube diameter showed 17% less resistance compared to that with an 8 mm connecting tube diameter. Q values were 7.22±0.1 and 7.81±0.04 L/min for cannulas with 8 mm and 9 mm connecting tube diameters, respectively. The delta P/Q² ratio values were 72% lower for the Medtronic cannula with a 9 mm connecting tube diameter compared to that with an 8 mm connecting tube diameter. Q values for the Medtronic cannula were 3.94±0.23 and 6.58±0.04 L/min with 8 mm and 9 mm connecting tube diameters, respectively. The 27 F smartcanula® showed 13% more flow rate compared to the 28 F Medtronic cannula using the unpaired Student t-test (p<0.0001).¦CONCLUSIONS: Our results demonstrated that Q was increased but delta P and delta P/Q² values were significantly decreased when the connecting tube diameter was increased for venous cannulas. The connecting tube diameter significantly affected the resistance to liquid flow through the cannula. Smartcanulas® outperform Medtronic cannulas.
Resumo:
Laktoosi eli maitosokeri on tärkein ainesosa useimpien nisäkkäiden tuottamassa maidossa. Sitä erotetaan herasta, juustosta ja maidosta. Laktoosia käytetään elintarvike- ja lääketeollisuuden raaka-aineena monissaeri tuotteissa. Lääketeollisuudessa laktoosia käytetään esimerkiksi tablettien täyteaineena. Hapettamalla laktoosia voidaan valmistaa laktobionihappoa, 2-keto-laktobionihappoa ja laktuloosia. Laktobionihappoa käytetään biohajoavien pintojen ja kosmetiikkatuotteiden valmistuksessa, sekä sisäelinten säilöntäliuoksissa, joissa laktobionihappo estää happiradikaalien aiheuttamien kudosvaurioiden syntymistä. Tässä työssä laktoosia hapetettiin laktobionihapoksi sekoittimella varustetussa laboratoriomittakaavaisessa panosreaktorissa käyttäenkatalyyttinä palladiumia aktiivihiilellä. Muutamissa kokeissa katalyytin promoottorina käytettiin vismuttia, joka hidastaa katalyytin deaktivoitumista. Työn tarkoituksena oli saada lisää tietoa laktoosin hapettamisen kinetiikasta. Laktoosin hapettumisessa laktobionihapoksi havaittiin selektiivisyyteen vaikuttavan muunmuassa reaktiolämpötila, paine, pH ja käytetyn katalyytin määrä. Katalyyttiä kierrättämällä eri kokeiden välillä saatiin paremmat konversiot, selektiivisyydet ja saannot. Parhaat koetulokset saatiin hapetettaessa synteettisellä ilmalla 60 oC lämpötilassa ja 1 bar paineessa. Tehdyissä kokeissa pH:n säätö tehtiin manuaalisesti, joten pH ei pysynyt koko ajan haluttuna. Laktoosin konversio oli parhaimmillaan 95 %. Laktobionihapon suhteellinen selektiivisyys oli 100% ja suhteellinen saanto 100 %. Kinetiikan matemaattinen mallinnus tehtiin Modest-ohjelmalla käyttäen kokeista saatuja mittaustuloksia.Ohjelman avulla estimoitiin parametreja ja saatiin matemaattinen malli reaktorille. Tässä työssä tehtiin kineettinen mallinnus myös ravistelureaktorissa tehdyille laktoosin hapetuskokeille, missä pH pysyi koko ajan haluttuna 'in-situ' titrauksen avulla. Työn yhteydessä selvitettiin myös mahdollisuutta käyttää monoliittikatalyyttejä laktoosin hapetusreaktiossa.
Resumo:
Expression by Saccharomyces cerevisiae of a polyhydroxyalkanoate (PHA) synthase modified at the carboxy end by the addition of a peroxisome targeting signal derived from the last 34 amino acids of the Brassica napus isocitrate lyase (ICL) and containing the terminal tripeptide Ser-Arg-Met resulted in the synthesis of PHA. The ability of the terminal peptide Ser-Arg-Met and of the 34-amino-acid peptide from the B. napus ICL to target foreign proteins to the peroxisome of S. cerevisiae was demonstrated with green fluorescent protein fusions. PHA synthesis was found to be dependent on the presence of both the enzymes generating the beta-oxidation intermediate 3-hydroxyacyl-coenzyme A (3-hydroxyacyl-[CoA]) and the peroxin-encoding PEX5 gene, demonstrating the requirement for a functional peroxisome and a beta-oxidation cycle for PHA synthesis. Using a variant of the S. cerevisiae beta-oxidation multifunctional enzyme with a mutation inactivating the B domain of the R-3-hydroxyacyl-CoA dehydrogenase, it was possible to modify the PHA monomer composition through an increase in the proportion of the short-chain monomers of five and six carbons.
Novel insulated gamma and lentis retroviral vectors towards safer genetic modification of stem cells
Resumo:
In otherwise successful gene therapy trials insertional mutagenesis has resulted in leukemia. The identification of new short synthetic genetic insulator elements (GIE) which would both prevent such activation effects and shield the transgene from silencing, is a main challenge. Previous attempts with e.g. b-globin HS4, have met with poor efficacy and genetic instability. We have investigated potential improvement with two new candidate synthetic GIEs in SIN-gamma and lentiviral vectors. With each constructs two internal promoters have been tested: either the strong Fr- MuLV-U3 or the housekeeping hPGK.We could identify a specific combination of insulator 2 repeats which translates into best functional activity, high titers and boundary effect in both gammaretro and lentivectors. In target cells a dramatic shift of expression is observed with an homogenous profile the level of which strictly depends on the promoter strength. These data remain stable in both HeLa cells over three months and cord blood HSCs for two months, irrespective of the multiplicity of infection (MOI). In comparison, control native and SIN vectors expression levels show heterogeneous, depend on the MOI and prove unstable. We have undertaken genotoxicity assessment in comparing integration patterns ingenuity in human target cells sampled over three months using high-throughput pyro-sequencing. Data will be presented. Further genotoxicity assessment will include in vivo studies. We have established insulated vectors which harbour both boundary and enhancer-blocking effect and show stable in prolonged in vitro culture conditions. Work performed with support of EC-DG research FP6-NoE, CLINIGENE: LSHB-CT-2006-018933
Resumo:
Five selective serotonin reuptake inhibitors (SSRIs) have been introduced recently: citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline. Although no therapeutic window has been defined for SSRIs, in contrast to tricyclic antidepressants, analytical methods for therapeutic drug monitoring of SSRIs are useful in several instances. SSRIs differ widely in their chemical structure and in their metabolism. The fact that some of them have N-demethylated metabolites, which are also SSRIs, requires that methods be available which allow therapeutic drug monitoring of the parent compounds and of these active metabolites. most procedures are based on prepurification of the SSRIs by liquid-liquid extraction before they are submitted to separation by chromatographic procedures (high-performance liquid chromatography, gas chromatography, thin layer chromatography) and detection by various detectors (UV, fluorescence, electrochemical detector, nitrogen-phosphorus detector, mass spectrometry). This literature review shows that most methods allow quantitative determination of SSRIs in plasma, in the lower ng/ml range, and that they are, therefore, suitable for therapeutic drug monitoring purposes of this category of drugs.
Resumo:
BACKGROUND: Adverse effects of combination antiretroviral therapy (CART) commonly result in treatment modification and poor adherence. METHODS: We investigated predictors of toxicity-related treatment modification during the first year of CART in 1318 antiretroviral-naive human immunodeficiency virus (HIV)-infected individuals from the Swiss HIV Cohort Study who began treatment between January 1, 2005, and June 30, 2008. RESULTS: The total rate of treatment modification was 41.5 (95% confidence interval [CI], 37.6-45.8) per 100 person-years. Of these, switches or discontinuations because of drug toxicity occurred at a rate of 22.4 (95% CI, 19.5-25.6) per 100 person-years. The most frequent toxic effects were gastrointestinal tract intolerance (28.9%), hypersensitivity (18.3%), central nervous system adverse events (17.3%), and hepatic events (11.5%). In the multivariate analysis, combined zidovudine and lamivudine (hazard ratio [HR], 2.71 [95% CI, 1.95-3.83]; P < .001), nevirapine (1.95 [1.01-3.81]; P = .050), comedication for an opportunistic infection (2.24 [1.19-4.21]; P = .01), advanced age (1.21 [1.03-1.40] per 10-year increase; P = .02), female sex (1.68 [1.14-2.48]; P = .009), nonwhite ethnicity (1.71 [1.18-2.47]; P = .005), higher baseline CD4 cell count (1.19 [1.10-1.28] per 100/microL increase; P < .001), and HIV-RNA of more than 5.0 log(10) copies/mL (1.47 [1.10-1.97]; P = .009) were associated with higher rates of treatment modification. Almost 90% of individuals with treatment-limiting toxic effects were switched to a new regimen, and 85% achieved virologic suppression to less than 50 copies/mL at 12 months compared with 87% of those continuing CART (P = .56). CONCLUSIONS: Drug toxicity remains a frequent reason for treatment modification; however, it does not affect treatment success. Close monitoring and management of adverse effects and drug-drug interactions are crucial for the durability of CART.
Resumo:
A rigorous unit operation model is developed for vapor membrane separation. The new model is able to describe temperature, pressure, and concentration dependent permeation as wellreal fluid effects in vapor and gas separation with hydrocarbon selective rubbery polymeric membranes. The permeation through the membrane is described by a separate treatment of sorption and diffusion within the membrane. The chemical engineering thermodynamics is used to describe the equilibrium sorption of vapors and gases in rubbery membranes with equation of state models for polymeric systems. Also a new modification of the UNIFAC model is proposed for this purpose. Various thermodynamic models are extensively compared in order to verify the models' ability to predict and correlate experimental vapor-liquid equilibrium data. The penetrant transport through the selective layer of the membrane is described with the generalized Maxwell-Stefan equations, which are able to account for thebulk flux contribution as well as the diffusive coupling effect. A method is described to compute and correlate binary penetrant¿membrane diffusion coefficients from the experimental permeability coefficients at different temperatures and pressures. A fluid flow model for spiral-wound modules is derived from the conservation equation of mass, momentum, and energy. The conservation equations are presented in a discretized form by using the control volume approach. A combination of the permeation model and the fluid flow model yields the desired rigorous model for vapor membrane separation. The model is implemented into an inhouse process simulator and so vapor membrane separation may be evaluated as an integralpart of a process flowsheet.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.