913 resultados para segmentation and reverberation
Resumo:
Oral squamous cell carcinoma (OSCC) is associated with high morbidity and mortality which is due, at least in part, to late detection. Precancerous and cancerous oral lesions may mimic any number of benign oral lesions, and as such may be left without investigation and treatment until they are well advanced. Over the past several years there has been renewed interest in oral cytology as an adjuvant clinical tool in the investigation of oral mucosal lesions. The purpose of the present study was to compare the usefulness of ploidy analysis after Feulgen stained cytological thin-prep specimens with traditional incisional biopsy and routine histopathological examination for the assessment of the pre-malignant potential of oral mucosal lesions. An analysis of the cytological specimens was undertaken with virtual microscopy which allowed for rapid and thorough analysis of the complete cytological specimen. 100 healthy individuals between 30 and 70 years of age, who were non-smokers, non-drinkers and not taking any medication, had cytological specimens collected from both the buccal mucosa and lateral margin of tongue to establish normal cytology parameters within a control population. Patients with a presumptive clinical diagnosis of lichen planus, leukoplakia or OSCC had lesional cytological samples taken prior to their diagnostic biopsy. Standardised thin preparations were prepared and each specimen stained by both Feuglen and Papanicolau methods. High speed scanning of the complete slide at 40X magnification was undertaken using the Aperio Scanscope TM and the green channel of the resultant image was analysed after threshold segmentation to isolate only nuclei and the integrated optical density of each nucleus taken as a gross measure of the DNA content (ploidy). Preliminary results reveal that ploidy assessment of oral cytology holds great promise as an adjunctive prognostic factor in the analysis of the malignant potential of oral mucosal lesions.
Resumo:
The scale insect genus Calycicoccus Brain has a single described species, C. merwei Brain, which is endemic to southeastern South Africa. Females of C. merwei induce small, mostly conical galls on the foliage of their host tree, Apodytes dimidiata E. Meyer ex Arn. (Icacinaceae), which has a wider, mostly coastal distribution, than that currently known for the scale insect. Calycicoccus has been placed in the family Eriococcidae and may be related to the South American genus Aculeococcus Lepage. No other native eriococcid species have been described so far in South Africa, although the family is diverse in other Gondwanan regions. This paper summarizes the biology of C. merwei, redescribes the adult female, describes the adult male, the second-instar female and the first-instar nymphs for the first time, and reconsiders the phylogenetic relationships of the genus. The adult female is shown to have unusual abdominal segmentation, in that segment I is present both dorsally and ventrally, but a segment is absent ventrally on the middle abdomen. First-instar nymphs are sexually dimorphic; males have a larger and relatively narrower body, larger mouthparts, longer antennae and legs, and more thoracic dorsal setae compared with females. Molecular data from nuclear small-subunit ribosomal DNA (18S) and elongation factor 1 alpha (EF-1a) show C. merwei to have no close relatives among the Eriococcidae sampled to date. Instead, the Calycicoccus lineage is part of a polytomy near the base of the Eriococcidae. Molecular dating of the node suggests that the Calycicoccus lineage diverged from other eriococcids more than 100 Mya. These data support the placement of Calycicoccus as the only genus in the subfamily Calycicoccinae Brain.
Resumo:
Neurobiological models support an involvement of white matter tracts in the pathophysiology of obsessive-compulsive disorder (OCD), but there has been little systematic evaluation of white matter volumes in OCD using magnetic resonance imaging (MRI). We investigated potential differences in the volume of the cingulum bundle (CB) and anterior limb of internal capsule (ALIC) in OCD patients (n = 19) relative to asymptomatic control subjects (n = 15). White matter volumes were assessed using a 1.5T MRI scanner. Between-group comparisons were carried out after spatial normalization and image segmentation using optimized voxel-based morphometry. Correlations between regional white matter volumes in OCD subjects and symptom severity ratings were also investigated. We found significant global white matter reductions in OCD patients compared to control subjects. The voxel-based search for regional abnormalities (with covariance for total white matter volumes) showed no specific white matter volume deficits in brain portions predicted a priori to be affected in OCD (CB and ALIC). However, large clusters of significant positive correlation with OCD severity scores were found bilaterally on the ALIC. These findings provide evidence of OCD-related ALIC abnormalities and suggest a connectivity dysfunction within frontal-striatal-thalamic-cortical circuits. Further studies are warranted to better define the role of such white matter alterations in the pathophysiology of OCD, and may provide clues for a more effectively targeting of neurosurgical treatments for OCD. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A longitudinal study investigated the claim that phonological memory contributes to vocabulary acquisition in young children. In the first phase, children were given tests of receptive vocabulary, receptive grammar, nonword repetition, phonological sensitivity (or awareness), and performance IQ. In the second phase, children were given the nonword repetition and receptive vocabulary tests. In Session 1, both nonword repetition and phonological sensitivity accounted for variation in receptive vocabulary and grammar after performance IQ effects were controlled. When phonological sensitivity was also controlled, nonword repetition did not account for significant additional variation in receptive vocabulary and grammar, When performance IQ and autoregression effects were controlled, all Session I verbal ability measures predicted Session 2 vocabulary, but only Session 1 vocabulary predicted Session 2 nonword repetition. When phonological sensitivity was also controlled. Session 1 nonword repetition (leniently scored) predicted Session 2 vocabulary. Overall, these findings show qualified support for the claim that the capacity component of nonword repetition contributes directly to vocabulary in young children. They suggest that the association between nonword repetition and vocabulary in young children may, to a substantial extent, reflect a latent phonological processing ability that is also manifest in phonological sensitivity.
Resumo:
Endeostigmata are early derivative acariform mites, fossils of which are known from the Devonian. Extant species bear numerous plesiomorphies, the most striking being remnant opisthosomal segmentation. Also, many are all-female parthenogens with broad geographical distributions. Many of the species reported in the present study may represent clones of ancient Gondwana species. Before the present study only a handful of endeostigmatans had been reported from Australia. A key to the families of Endeostigmata is provided in the present paper, along with a review of the Australian fauna of the families Alicorhagiidae (new record), Grandjeanicidae (new record), Oehserchestidae (new record), and Terpnacaridae. Terpnacarus gibbosus (Womersley) is redescribed. A report of the first records of the cosmopolitan parthenogens Alicorhagia usitata Theron et al., Alycosmesis palmata (Oudemans), Stigmalychus veretrum Theron et al., Terpnacarus carolinaensis Theron, and Oehserchestes arboriger (Theron) in Australia is provided, along with a description of the new species Grandjeanicus theroni (Grandjeanicidae). Terpnacarus variolus Shiba and T. glebulentus Theron are junior synonyms of T. gibbosus.
Resumo:
Rival claims have been made concerning the importance of rime sensitivity as a predictor of early word reading skill. Hulme et al. (2002) suggested that phoneme sensitivity is more strongly predictive of word reading ability than is onset-rime sensitivity. An examination of two independent data sets suggests that, although onset-rime sensitivity typically predicts school entrants' later word reading skill, phoneme sensitivity does predict more variation. However, multiple regression analyses do not reveal the level of phonological sensitivity that children need in order to understand alphabetic reading instruction. This issue is crucial to the detection of children at risk for reading failure and for the design of intervention programs for these children. A different analytic strategy is described for addressing this issue. (C) 2002 Elsevier Science (USA).
Resumo:
Given the importance of syllables in the development of reading, spelling, and phonological awareness, information is needed about how children syllabify spoken words. To what extent is syllabification affected by knowledge of spelling, to what extent by phonology, and which phonological factors are influential? In Experiment 1, six- and seven-year-old children did not show effects of spelling on oral syllabification, performing similarly on words such as habit and rabbit. Spelling influenced the syllabification of older children and adults, with the results suggesting that knowledge of spelling must be well entrenched before it begins to affect oral syllabification. Experiment 2 revealed influences of phonological factors on syllabification that were similar across age groups. Young children, like older children and adults, showed differences between words with short and long vowels (e.g., lemon vs. demon) and words with sonorant and obstruent intervocalic consonants (e.g., melon vs. wagon). (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
In this paper we present a method for real-time detection and tracking of people in video captured by a depth camera. For each object to be assessed, an ordered sequence of values that represents the distances between its center of mass to the boundary points is calculated. The recognition is based on the analysis of the total distance value between the above sequence and some pre-defined human poses, after apply the Dynamic Time Warping. This similarity approach showed robust results in people detection.
Resumo:
Image segmentation is an ubiquitous task in medical image analysis, which is required to estimate morphological or functional properties of given anatomical targets. While automatic processing is highly desirable, image segmentation remains to date a supervised process in daily clinical practice. Indeed, challenging data often requires user interaction to capture the required level of anatomical detail. To optimize the analysis of 3D images, the user should be able to efficiently interact with the result of any segmentation algorithm to correct any possible disagreement. Building on a previously developed real-time 3D segmentation algorithm, we propose in the present work an extension towards an interactive application where user information can be used online to steer the segmentation result. This enables a synergistic collaboration between the operator and the underlying segmentation algorithm, thus contributing to higher segmentation accuracy, while keeping total analysis time competitive. To this end, we formalize the user interaction paradigm using a geometrical approach, where the user input is mapped to a non-cartesian space while this information is used to drive the boundary towards the position provided by the user. Additionally, we propose a shape regularization term which improves the interaction with the segmented surface, thereby making the interactive segmentation process less cumbersome. The resulting algorithm offers competitive performance both in terms of segmentation accuracy, as well as in terms of total analysis time. This contributes to a more efficient use of the existing segmentation tools in daily clinical practice. Furthermore, it compares favorably to state-of-the-art interactive segmentation software based on a 3D livewire-based algorithm.
Resumo:
While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.
Resumo:
One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69±0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.
Resumo:
Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.
Resumo:
OBJECTIVE: To identify the effects of decentralization on health financing and governance policies in Mexico from the perspective of users and providers. METHODS: A cross-sectional study was carried out in four states that were selected according to geopolitical and administrative criteria. Four indicators were assessed: changes and effects on governance, financing sources and funds, the final destination of resources, and fund allocation mechanisms. Data collection was performed using in-depth interviews with health system key personnel and community leaders, consensus techniques and document analyses. The interviews were transcribed and analyzed by thematic segmentation. RESULTS: The results show different effectiveness levels for the four states regarding changes in financing policies and community participation. Effects on health financing after decentralization were identified in each state, including: greater participation of municipal and state governments in health expenditure, increased financial participation of households, greater community participation in low-income states, duality and confusion in the new mechanisms for coordination among the three government levels, absence of an accountability system, lack of human resources and technical skills to implement, monitor and evaluate changes in financing. CONCLUSIONS: In general, positive and negative effects of decentralization on health financing and governance were identified. The effects mentioned by health service providers and users were related to a diversification of financing sources, a greater margin for decisions around the use and final destination of financial resources and normative development for the use of resources. At the community level, direct financial contributions were mentioned, as well as in-kind contributions, particularly in the form of community work.
Resumo:
Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and Computers
Resumo:
Dissertation presented to obtain the degree of Doctor of Philosophy in Electrical Engineering, speciality on Perceptional Systems, by the Universidade Nova de Lisboa, Faculty of Sciences and Technology