973 resultados para seed dressing
Resumo:
Four experiments conducted over three seasons (2002-05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m(2) and spikelet density from 13 170 to 5960 spikelets/m(2) when rape plant density was increased from 16 to 81 plants/m(2). Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9 % when plant density was increased from 29-51 plants/m(2). Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m(2) without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m(2) without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m(2) and spikelet density from 5780 to 15 060 spikelets/m(2).
Resumo:
1. Many farmland bird species have undergone significant declines. It is important to predict the effect of agricultural change on these birds and their response to conservation measures. This requirement could be met by mechanistic models that predict population size from the optimal foraging behaviour and fates of individuals within populations. A key component of these models is the functional response, the relationship between food and competitor density and feeding rate. 2. This paper describes a method for measuring functional responses of farmland birds, and applies this method to a declining farmland bird, the corn bunting Miliaria calandra L. We derive five alternative models to predict the functional responses of farmland birds and parameterize these for corn bunting. We also assess the minimum sample sizes required to predict accurately the functional response. 3. We show that the functional response of corn bunting can be predicted accurately from a few behavioural parameters (searching rate, handling time, vigilance time) that are straightforward to measure in the field. These parameters can be measured more quickly than the alternative of measuring the functional response directly. 4. While corn bunting violated some of the assumptions of Holling's disk equation (model 1 in our study), it still provided the most accurate fit to the observed feeding rates while remaining the most statistically simple model tested. Our other models may be more applicable to other species, or corn bunting feeding in other locations. 5. Although further tests are required, our study shows how functional responses can be predicted, simplifying the development of mechanistic models of farmland bird populations.
Resumo:
Many developing countries are currently engaged in designing and implementing plant variety protection systems. Encouraging private investment in plant breeding is the key rationale for extending intellectual property rights to plant varieties. However, the design of plant variety protection systems in developing countries has been dominated by concerns regarding the inequities of a plant variety protection system, especially the imbalance in the reward structure between plant breeders and farmers. The private seed industry, a key stakeholder in plant variety protection, appears to be playing only a peripheral role in the design of the intellectual property rights regime. This paper explores the potential response of the private seed industry in India to plant variety protection legislation based on a survey of major plant breeding companies. The survey finds that the private seed industry in India is generally unenthusiastic about the legislation and plant variety protection is likely to have only a very limited impact on their research profile and expenditures on plant breeding. Measures designed to curb the 'excessive' profits of breeders, farmers' rights provisions and poor prospects for enforcement of rights are seen to be seriously diluting breeders' rights, leaving few incentives for innovation. If the fundamental objective of plant variety protection is to stimulate private investment in plant breeding, then developing countries need to seriously address the question of improving appropriability of returns from investment.
Resumo:
We examined the effect of the invasive Solanum elaeagnifolium (Solanaceae) on flower visitation patterns and seed set of the co-flowering native Glaucium flavum (Papaveraceae). We observed flowering G. flavum plants in invaded and uninvaded sites and found that G. flavum flowers in uninvaded sites received significantly more total visits. In addition, we hand-pollinated flowers on plants of G. flavum with (i) pure conspecific pollen, (ii) pure S. elaeagnifolium pollen and (iii) three different mixtures of the two types of pollen (containing 25, 50 and 75% invasive pollen). As a control, flowers were left unmanipulated or were permanently bagged. Seed set did not differ significantly between flowers receiving pollen mixtures and pure conspecific pollen. However, in the open pollination treatment, seed set was significantly lower than in the 100% conspecific pollen treatment, which suggests pollen limitation. Bagged flowers had very low seed set. G. flavum was generally resilient against the deposition of S. elaeagnifolium pollen.
Resumo:
1. Estimates of seed bank depletion rates are essential for modelling and management of plant populations. The seed bag burial method is often used to measure seed mortality in the soil. However, the density of seeds within seed bags is higher than densities in natural seed banks, which may elevate levels of pathogens and influence seed mortality. The aim of this study was to quantify the effects of fungi and seed density within buried mesh bags on the mortality of seeds. Striga hermonthica was chosen as the study species because it has been widely studied but different methods for measuring seed mortality in the soil have yielded contradictory estimates. 2. Seed bags were buried in soil and exhumed at regular time intervals to monitor mortality of the seeds in three field experiments during two rainy seasons. The effect of fungal activity on seed mortality was evaluated in a fungi exclusion experiment. Differences in seed-to-seed interaction were obtained by using two and four densities within the seed bags in consecutive years. Densities were created by mixing 1000 seeds with 0, 10, 100 or 1000 g of coarse sand. 3. The mortality rate was significantly lower when fungi were excluded, indicating the possible role of pathogenic fungi. 4. Decreasing the density of seeds in bags significantly reduced seed mortality, most probably because of decreased seed-to-seed contamination by pathogenic fungi. 5. Synthesis and applications. Models of plant populations in general and annual weeds in particular often use values from the literature for seed bank depletion rates. These depletion rates have often been estimated by the seed bag burial method, yet seed density within seed bags may be unrealistically high. Consequently, estimates of seed mortality rates may be too high because of an overestimation of the effects of soil or seed-borne pathogens. Species that have been classified from such studies as having short-lived seed banks may need to be re-assessed using realistic densities either within seed bags or otherwise. Similarly, models of seed bank dynamics based on such overestimated depletion rates may lead to incorrect conclusions regarding the seed banks and, perhaps, the management of weeds and rare species.
Resumo:
Buffer strips are refuges for a variety of plants providing resources, such as pollen, nectar and seeds, for higher trophic levels, including invertebrates, mammals and birds. Margins can also harbour plant species that are potentially injurious to the adjacent arable crop (undesirable species). Sowing perennial species in non-cropped buffer strips can reduce weed incidence, but limits the abundance of annuals with the potential to support wider biodiversity (desirable species). We investigated the responses of unsown plant species present in buffer strips established with three different seed mixes managed annually with three contrasting management regimes (cutting, sward scarification and selective graminicide). Sward scarification had the strongest influence on the unsown desirable (e.g. Sonchus spp.) and unsown pernicious (e.g. Elytrigia repens) species, and was generally associated with higher cover values of these species. However, abundances of several desirable weed species, in particular Poa annua, were not promoted by scarification. The treatments of cutting and graminicide tended to have negative impacts on the unsown species, except for Cirsium vulgare, which increased with graminicide application. Differences in unsown species cover between seed mixes were minimal, although the grass-only mix was more susceptible to establishment by C. vulgare and Galium aparine than the two grass and forb mixes. Annual scarification can enable desirable annuals and sown perennials to co-exist, however, this practice can also promote pernicious species, and so is unlikely to be widely adopted as a management tool in its current form.
Resumo:
Beetle assemblages and their response to plant community composition and architectural structure were monitored from 2002 to 2006 within arable field margins. Field margins were sown with either tussock grass and forbs, fine grass and forbs or grass only seed mixtures. After an establishment year, field margins were managed using standard sward cuts, scarification, or graminicide application. For predatory beetles, overall density was greatest where tussock grasses were included within the seed mixtures, while the densities of phytophagous beetles were greatest where forbs were present. Unexpectedly, species rarefaction curves suggested that phytophagous beetle species richness was greatest where field margins were established using a grass only seed mixture. The structure of the beetle assemblages, i.e., the relative abundances of individual species, was largely dependent on seed mixture, although margin management also played an important role. The results suggest that field margins established using seed mixtures containing tussock grasses and forbs would be expected to provide the greatest resources for beetles, at least at local scales. However, the use of a single standardised seed mixture for margin establishment would result in a homogenisation of beetle assemblages at a regional scale. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the 1960s Taxon published articles aimed at improving botanical Seed Lists. We compared suggestions made then with the situation in 2007. Sadly the majority of problems raised in the original manuscripts were still evident today. Botanic gardens must improve if this practice is to survive.
Resumo:
Four experiments conducted over three seasons (2002-05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m(2) and spikelet density from 13 170 to 5960 spikelets/m(2) when rape plant density was increased from 16 to 81 plants/m(2). Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9 % when plant density was increased from 29-51 plants/m(2). Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m(2) without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m(2) without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m(2) and spikelet density from 5780 to 15 060 spikelets/m(2).
Resumo:
Seed predation by avian and non-avian predators was quantified in the boundaries and cropped areas of cereal fields by presenting known quantities of seed with and without exclusion cages. Predator encounter-rates with the dishes exceeded 99%. Birds removed on average 6.7% seed from the dishes during the seven-day trials compared to 51% by non-avian predators. A comparison was made of the causal factors responsible for predation of Avena fatua, Chenopodium album and Cirsium arvense seeds. A. fatua seeds were preyed most heavily by both avian and non-avian predators. Seed removal by birds was greater in the cropped area than in the field boundary, non-avian predators being generally more active in the field boundary. Seed predation by birds was greater in spring than in any other season, whilst losses to other animals were greater during autumn and winter. Although, birds were not the main seed predators in cereal fields, they may contribute to weed seed depletion, of relevance to reduced-input farming systems where herbicides use is restricted.
Resumo:
Field experiments were conducted to quantify the natural levels of post-dispersal seed predation of arable weed species in spring barley and to identify the main groups of seed predators. Four arable weed species were investigated that were of high biodiversity value, yet of low to moderate competitive ability with the crop. These were Chenopodium album, Sinapis arvensis, Stellaria media and Polygonum aviculare. Exclusion treatments were used to allow selective access to dishes of seeds by different predator groups. Seed predation was highest early in the season, followed by a gradual decline in predation over the summer for all species. All species were taken by invertebrates. The activity of two phytophagous carabid genera showed significant correlations with seed predation levels. However, in general carabid activity was not related to seed predation and this is discussed in terms of the mainly polyphagous nature of many Carabid species that utilized the seed resource early in the season, but then switched to carnivory as prey populations increased. The potential relevance of post-dispersal seed predation to the development of weed management systems that maximize biological control through conservation and optimize herbicide use, is discussed.
Resumo:
Pea (Pisum sativum L.) mutant near-isogenic lines (RRrbrb, rrRbRb, rrrbrb) with lower starch but higher lipid contents, brought about by lesions in the starch biosynthetic pathway, had seed moisture sorption isotherms displaced below that of the wild type (RRRbRb). The negative logarithmic relationship between seed longevity and seed storage moisture content (%, f.wt basis), determined in hermetic storage at 65 °C, also differed: longevity in the mutant near-isogenic lines was poorer and less sensitive to moisture content than in the wild type (i.e. CW was lower). The low-moisture-content limit (mc) to this relation also differed, being lower in the mutant near-isogenic lines (5.4–5.9%) than in the wild type (6.1%). In contrast, all four near-isogenic lines showed no difference (P >0.25) in the negative semi-logarithmic relationship between equilibrium relative humidity (ERH) and seed longevity. It is concluded that the effect of these alleles at the r and rb loci on seed longevity was largely indirect; a consequence of their effect on seed composition and hence on moisture sorption isotherms. However, this explanation could not be invoked at moisture contents below mc where differences in longevity remained substantial (RRRbRb double that of rrrbrb). Hence, these mutant alleles affected seed longevity directly at very low moisture contents.