995 resultados para scheduling sequence
Resumo:
We consider a joint power control and transmission scheduling problem in wireless networks with average power constraints. While the capacity region of a wireless network is convex, a characterization of this region is a hard problem. We formulate a network utility optimization problem involving time-sharing across different "transmission modes," where each mode corresponds to the set of power levels used in the network. The structure of the optimal solution is a time-sharing across a small set of such modes. We use this structure to develop an efficient heuristic approach to finding a suboptimal solution through column generation iterations. This heuristic approach converges quite fast in simulations, and provides a tool for wireless network planning.
Resumo:
Antenna selection allows multiple-antenna systems to achieve most of their promised diversity gain, while keeping the number of RF chains and, thus, cost/complexity low. In this paper we investigate antenna selection for fourth-generation OFDMA- based cellular communications systems, in particular, 3GPP LTE (long-term evolution) systems. We propose a training method for antenna selection that is especially suitable for OFDMA. By means of simulation, we evaluate the SNR-gain that can be achieved with our design. We find that the performance depends on the bandwidth assigned to each user, the scheduling method (round-robin or frequency-domain scheduling), and the Doppler spread. Furthermore, the signal-to-noise ratio of the training sequence plays a critical role. Typical SNR gains are around 2 dB, with larger values obtainable in certain circumstances.
Resumo:
We consider the problem of scheduling of a wireless channel (server) to several queues. Each queue has its own link (transmission) rate. The link rate of a queue can vary randomly from slot to slot. The queue lengths and channel states of all users are known at the beginning of each slot. We show the existence of an optimal policy that minimizes the long term (discounted) average sum of queue lengths. The optimal policy, in general needs to be computed numerically. Then we identify a greedy (one step optimal) policy, MAX-TRANS which is easy to implement and does not require the channel and traffic statistics. The cost of this policy is close to optimal and better than other well-known policies (when stable) although it is not throughput optimal for asymmetric systems. We (approximately) identify its stability region and obtain approximations for its mean queue lengths and mean delays. We also modify this policy to make it throughput optimal while retaining good performance.
Resumo:
In achieving higher instruction level parallelism, software pipelining increases the register pressure in the loop. The usefulness of the generated schedule may be restricted to cases where the register pressure is less than the available number of registers. Spill instructions need to be introduced otherwise. But scheduling these spill instructions in the compact schedule is a difficult task. Several heuristics have been proposed to schedule spill code. These heuristics may generate more spill code than necessary, and scheduling them may necessitate increasing the initiation interval. We model the problem of register allocation with spill code generation and scheduling in software pipelined loops as a 0-1 integer linear program. The formulation minimizes the increase in initiation interval (II) by optimally placing spill code and simultaneously minimizes the amount of spill code produced. To the best of our knowledge, this is the first integrated formulation for register allocation, optimal spill code generation and scheduling for software pipelined loops. The proposed formulation performs better than the existing heuristics by preventing an increase in II in 11.11% of the loops and generating 18.48% less spill code on average among the loops extracted from Perfect Club and SPEC benchmarks with a moderate increase in compilation time.
Resumo:
We consider a problem of providing mean delay and average throughput guarantees in random access fading wireless channels using CSMA/CA algorithm. This problem becomes much more challenging when the scheduling is distributed as is the case in a typical local area wireless network. We model the CSMA network using a novel queueing network based approach. The optimal throughput per device and throughput optimal policy in an M device network is obtained. We provide a simple contention control algorithm that adapts the attempt probability based on the network load and obtain bounds for the packet transmission delay. The information we make use of is the number of devices in the network and the queue length (delayed) at each device. The proposed algorithms stay within the requirements of the IEEE 802.11 standard.
Resumo:
We consider the problem of scheduling semiconductor burn-in operations, where burn-in ovens are modelled as batch processing machines. Most of the studies assume that ready times and due dates of jobs are agreeable (i.e., ri < rj implies di ≤ dj). In many real world applications, the agreeable property assumption does not hold. Therefore, in this paper, scheduling of a single burn-in oven with non-agreeable release times and due dates along with non-identical job sizes as well as non-identical processing of time problem is formulated as a Non-Linear (0-1) Integer Programming optimisation problem. The objective measure of the problem is minimising the maximum completion time (makespan) of all jobs. Due to computational intractability, we have proposed four variants of a two-phase greedy heuristic algorithm. Computational experiments indicate that two out of four proposed algorithms have excellent average performance and also capable of solving any large-scale real life problems with a relatively low computational effort on a Pentium IV computer.