859 resultados para robust hedging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulse wave velocity (PWV) is a surrogate of arterial stiffness and represents a non-invasive marker of cardiovascular risk. The non-invasive measurement of PWV requires tracking the arrival time of pressure pulses recorded in vivo, commonly referred to as pulse arrival time (PAT). In the state of the art, PAT is estimated by identifying a characteristic point of the pressure pulse waveform. This paper demonstrates that for ambulatory scenarios, where signal-to-noise ratios are below 10 dB, the performance in terms of repeatability of PAT measurements through characteristic points identification degrades drastically. Hence, we introduce a novel family of PAT estimators based on the parametric modeling of the anacrotic phase of a pressure pulse. In particular, we propose a parametric PAT estimator (TANH) that depicts high correlation with the Complior(R) characteristic point D1 (CC = 0.99), increases noise robustness and reduces by a five-fold factor the number of heartbeats required to obtain reliable PAT measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, the authors evaluate a merit function for 2D/3D registration called stochastic rank correlation (SRC). SRC is characterized by the fact that differences in image intensity do not influence the registration result; it therefore combines the numerical advantages of cross correlation (CC)-type merit functions with the flexibility of mutual-information-type merit functions. The basic idea is that registration is achieved on a random subset of the image, which allows for an efficient computation of Spearman's rank correlation coefficient. This measure is, by nature, invariant to monotonic intensity transforms in the images under comparison, which renders it an ideal solution for intramodal images acquired at different energy levels as encountered in intrafractional kV imaging in image-guided radiotherapy. Initial evaluation was undertaken using a 2D/3D registration reference image dataset of a cadaver spine. Even with no radiometric calibration, SRC shows a significant improvement in robustness and stability compared to CC. Pattern intensity, another merit function that was evaluated for comparison, gave rather poor results due to its limited convergence range. The time required for SRC with 5% image content compares well to the other merit functions; increasing the image content does not significantly influence the algorithm accuracy. The authors conclude that SRC is a promising measure for 2D/3D registration in IGRT and image-guided therapy in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

wo methods for registering laser-scans of human heads and transforming them to a new semantically consistent topology defined by a user-provided template mesh are described. Both algorithms are stated within the Iterative Closest Point framework. The first method is based on finding landmark correspondences by iteratively registering the vicinity of a landmark with a re-weighted error function. Thin-plate spline interpolation is then used to deform the template mesh and finally the scan is resampled in the topology of the deformed template. The second algorithm employs a morphable shape model, which can be computed from a database of laser-scans using the first algorithm. It directly optimizes pose and shape of the morphable model. The use of the algorithm with PCA mixture models, where the shape is split up into regions each described by an individual subspace, is addressed. Mixture models require either blending or regularization strategies, both of which are described in detail. For both algorithms, strategies for filling in missing geometry for incomplete laser-scans are described. While an interpolation-based approach can be used to fill in small or smooth regions, the model-driven algorithm is capable of fitting a plausible complete head mesh to arbitrarily small geometry, which is known as "shape completion". The importance of regularization in the case of extreme shape completion is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile multimedia ad hoc services run on dynamic topologies due to node mobility or failures and wireless channel impairments. A robust routing service must adapt to topology changes with the aim of recovering or maintaining the video quality level and reducing the impact of the user's experience. In those scenarios, beacon-less Opportunistic Routing (OR) increases the robustness by supporting routing decisions in a completely distributed manner based on protocol-specific characteristics. However, the existing beacon-less OR approaches do not efficiently combine multiple metrics for forwarding selection, which cause higher packet loss rate, and consequently reduce the video quality level. In this paper, we assess the robustness and reliability of our recently developed OR protocol under node failures, called cross-layer Link quality and Geographical-aware OR protocol (LinGO). Simulation results show that LinGO achieves multimedia dissemination with QoE support and robustness in scenarios with dynamic topologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a method that robustly combines color and feature buffers to denoise Monte Carlo renderings. On one hand, feature buffers, such as per pixel normals, textures, or depth, are effective in determining denoising filters because features are highly correlated with rendered images. Filters based solely on features, however, are prone to blurring image details that are not well represented by the features. On the other hand, color buffers represent all details, but they may be less effective to determine filters because they are contaminated by the noise that is supposed to be removed. We propose to obtain filters using a combination of color and feature buffers in an NL-means and cross-bilateral filtering framework. We determine a robust weighting of colors and features using a SURE-based error estimate. We show significant improvements in subjective and quantitative errors compared to the previous state-of-the-art. We also demonstrate adaptive sampling and space-time filtering for animations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a fully automatic, robust approach for segmenting proximal femur in conventional X-ray images. Our method is based on hierarchical landmark detection by random forest regression, where the detection results of 22 global landmarks are used to do the spatial normalization, and the detection results of the 59 local landmarks serve as the image cue for instantiation of a statistical shape model of the proximal femur. To detect landmarks in both levels, we use multi-resolution HoG (Histogram of Oriented Gradients) as features which can achieve better accuracy and robustness. The efficacy of the present method is demonstrated by experiments conducted on 150 clinical x-ray images. It was found that the present method could achieve an average point-to-curve error of 2.0 mm and that the present method was robust to low image contrast, noise and occlusions caused by implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Images of an object under different illumination are known to provide strong cues about the object surface. A mathematical formalization of how to recover the normal map of such a surface leads to the so-called uncalibrated photometric stereo problem. In the simplest instance, this problem can be reduced to the task of identifying only three parameters: the so-called generalized bas-relief (GBR) ambiguity. The challenge is to find additional general assumptions about the object, that identify these parameters uniquely. Current approaches are not consistent, i.e., they provide different solutions when run multiple times on the same data. To address this limitation, we propose exploiting local diffuse reflectance (LDR) maxima, i.e., points in the scene where the normal vector is parallel to the illumination direction (see Fig. 1). We demonstrate several noteworthy properties of these maxima: a closed-form solution, computational efficiency and GBR consistency. An LDR maximum yields a simple closed-form solution corresponding to a semi-circle in the GBR parameters space (see Fig. 2); because as few as two diffuse maxima in different images identify a unique solution, the identification of the GBR parameters can be achieved very efficiently; finally, the algorithm is consistent as it always returns the same solution given the same data. Our algorithm is also remarkably robust: It can obtain an accurate estimate of the GBR parameters even with extremely high levels of outliers in the detected maxima (up to 80 % of the observations). The method is validated on real data and achieves state-of-the-art results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ventricular assist devices (VADs) are blood pumps that offer an option to support the circulation of patients with severe heart failure. Since a failing heart has a remaining pump function, its interaction with the VAD influences the hemodynamics. Ideally, the heart's action is taken into account for actuating the device such that the device is synchronized to the natural cardiac cycle. To realize this in practice, a reliable real-time algorithm for the automatic synchronization of the VAD to the heart rate is required. This paper defines the tasks such an algorithm needs to fulfill: the automatic detection of irregular heart beats and the feedback control of the phase shift between the systolic phases of the heart and the assist device. We demonstrate a possible solution to these problems and analyze its performance in two steps. First, the algorithm is tested using the MIT-BIH arrhythmia database. Second, the algorithm is implemented in a controller for a pulsatile and a continuous-flow VAD. These devices are connected to a hybrid mock circulation where three test scenarios are evaluated. The proposed algorithm ensures a reliable synchronization of the VAD to the heart cycle, while being insensitive to irregularities in the heart rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hintergrund: Die therapeutische Arbeitsbeziehung (alliance) ist das meistuntersuchte Prozessmerkmal in der Psychotherapieforschung schlecht hin und zeigt sich als robuster Prädiktor für Therapieerfolg (r = .275). Fragestellung: Welche Einflussfaktoren (wie beispielsweise kognitive Verhaltenstherapie in randomisierten Trials) moderieren den Zusammenhang zwischen Allianz und Erfolg? Methode: Basierend auf über zweihundert in Englisch, deutsch, französisch und italienisch verfassten Primärstudien werden mögliche Moderatoren metaanalytisch untersucht, die den Zusammenhang zwischen Allianz und Therapieerfolg beeinflussen. Resultate: Der aktuelle Stand der APA-Taskforce kann folgendermaßen zusammengefasst werden: (a) Erhebungszeitpunkt der Allianz, (b) Anzahl Patienten pro Therapeut, (b) Forscherinteresse, (c) Therapieerfolg = Abbrüche, (d) Anteil der Nicht-Weißen Bevölkerung und (e) Alkohol und -Substanzmissbrauch als Ausschlusskriterium, beeinflussen den Zusammenhang zwischen Allianz und Erfolg. Folgenden Aspekten moderieren den Zusammenhang zwischen Allianz und Therapieerfolg nicht: (a) Allianz-Messmittel und Erhebungsperspektive (Patient, Therapeut oder Beobachter), (b) Doktorarbeiten, (c) Therapietradition (Kognitive-Behaviorale, Interpersonale, psychodynamische Therapien), (d) randomisiert kontrollierte Trials, (e) manualisierte Therapien, (f ) störungsspezifische Erfolgsmessung, (g) Persönlichkeitsstörungen, (h) nicht-englisch sprachliche Manuskripte. Diskussion: Durch die Moderatoren kann ein beträchtlicher Anteil der Heterogenität erklärt werden. Die Beziehung zwischen Allianz und Therapieerfolg wird durch konzeptuelle biopsychosozialer Faktoren mitbeeinflusst.

Relevância:

20.00% 20.00%

Publicador: