923 resultados para respirazione, pattern recognition, apprendimento automatico, monitoraggio, segnali biomedici
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.
Resumo:
Remote sensing techniques involving hyperspectral imagery have applications in a number of sciences that study some aspects of the surface of the planet. The analysis of hyperspectral images is complex because of the large amount of information involved and the noise within that data. Investigating images with regard to identify minerals, rocks, vegetation and other materials is an application of hyperspectral remote sensing in the earth sciences. This thesis evaluates the performance of two classification and clustering techniques on hyperspectral images for mineral identification. Support Vector Machines (SVM) and Self-Organizing Maps (SOM) are applied as classification and clustering techniques, respectively. Principal Component Analysis (PCA) is used to prepare the data to be analyzed. The purpose of using PCA is to reduce the amount of data that needs to be processed by identifying the most important components within the data. A well-studied dataset from Cuprite, Nevada and a dataset of more complex data from Baffin Island were used to assess the performance of these techniques. The main goal of this research study is to evaluate the advantage of training a classifier based on a small amount of data compared to an unsupervised method. Determining the effect of feature extraction on the accuracy of the clustering and classification method is another goal of this research. This thesis concludes that using PCA increases the learning accuracy, and especially so in classification. SVM classifies Cuprite data with a high precision and the SOM challenges SVM on datasets with high level of noise (like Baffin Island).
Resumo:
Les détecteurs ATLAS-MPX sont des détecteurs Medipix2-USB recouverts de convertisseurs de fluorure de lithium et de polyéthylène pour augmenter l’efficacité de détection des neutrons lents et des neutrons rapides respectivement. Un réseau de quinze détecteurs ATLAS-MPX a été mis en opération dans le détecteur ATLAS au LHC du CERN. Deux détecteurs ATLAS-MPX de référence ont été exposés à des sources de neutrons rapides 252 Cf et 241 AmBe ainsi qu’aux neutrons rapides produits par la réaction 7Li(p, xn) pour l’étude de la réponse du détecteur à ces neutrons. Les neutrons rapides sont principalement détectés à partir des protons de recul des collisions élastiques entre les neutrons et l’hydrogène dans le polyéthylène. Des réactions nucléaires entre les neutrons et le silicium produisent des particules-α. Une étude de l’efficacité de reconnaissance des traces des protons et des particules-α dans le détecteur Medipix2-USB a été faite en fonction de l’énergie cinétique incidente et de l’angle d’incidence. L’efficacité de détection des neutrons rapides a été évaluée à deux seuils d’énergie (8 keV et 230 keV) dans les détecteurs ATLAS-MPX. L’efficacité de détection des neutrons rapides dans la région du détecteur couverte avec le polyéthylène augmente en fonction de l’énergie des neutrons : (0.0346 ± 0.0004) %, (0.0862 ± 0.0018) % et (0.1044 ± 0.0026) % pour des neutrons rapides de 2.13 MeV, 4.08 MeV et 27 MeV respectivement. L’étude pour déterminer l’énergie des neutrons permet donc d’estimer le flux des neutrons quand le détecteur ATLAS-MPX est dans un champ de radiation inconnu comme c’est le cas dans le détecteur ATLAS au LHC.
Resumo:
L’objectif principal de cette thèse était de quantifier et comparer l’effort requis pour reconnaître la parole dans le bruit chez les jeunes adultes et les personnes aînées ayant une audition normale et une acuité visuelle normale (avec ou sans lentille de correction de la vue). L’effort associé à la perception de la parole est lié aux ressources attentionnelles et cognitives requises pour comprendre la parole. La première étude (Expérience 1) avait pour but d’évaluer l’effort associé à la reconnaissance auditive de la parole (entendre un locuteur), tandis que la deuxième étude (Expérience 2) avait comme but d’évaluer l’effort associé à la reconnaissance auditivo-visuelle de la parole (entendre et voir le visage d’un locuteur). L’effort fut mesuré de deux façons différentes. D’abord par une approche comportementale faisant appel à un paradigme expérimental nommé double tâche. Il s’agissait d’une tâche de reconnaissance de mot jumelée à une tâche de reconnaissance de patrons vibro-tactiles. De plus, l’effort fut quantifié à l’aide d’un questionnaire demandant aux participants de coter l’effort associé aux tâches comportementales. Les deux mesures d’effort furent utilisées dans deux conditions expérimentales différentes : 1) niveau équivalent – c'est-à-dire lorsque le niveau du bruit masquant la parole était le même pour tous les participants et, 2) performance équivalente – c'est-à-dire lorsque le niveau du bruit fut ajusté afin que les performances à la tâche de reconnaissance de mots soient identiques pour les deux groupes de participant. Les niveaux de performance obtenus pour la tâche vibro-tactile ont révélé que les personnes aînées fournissent plus d’effort que les jeunes adultes pour les deux conditions expérimentales, et ce, quelle que soit la modalité perceptuelle dans laquelle les stimuli de la parole sont présentés (c.-à.-d., auditive seulement ou auditivo-visuelle). Globalement, le ‘coût’ associé aux performances de la tâche vibro-tactile était au plus élevé pour les personnes aînées lorsque la parole était présentée en modalité auditivo-visuelle. Alors que les indices visuels peuvent améliorer la reconnaissance auditivo-visuelle de la parole, nos résultats suggèrent qu’ils peuvent aussi créer une charge additionnelle sur les ressources utilisées pour traiter l’information. Cette charge additionnelle a des conséquences néfastes sur les performances aux tâches de reconnaissance de mots et de patrons vibro-tactiles lorsque celles-ci sont effectuées sous des conditions de double tâche. Conformément aux études antérieures, les coefficients de corrélations effectuées à partir des données de l’Expérience 1 et de l’Expérience 2 soutiennent la notion que les mesures comportementales de double tâche et les réponses aux questionnaires évaluent différentes dimensions de l’effort associé à la reconnaissance de la parole. Comme l’effort associé à la perception de la parole repose sur des facteurs auditifs et cognitifs, une troisième étude fut complétée afin d’explorer si la mémoire auditive de travail contribue à expliquer la variance dans les données portant sur l’effort associé à la perception de la parole. De plus, ces analyses ont permis de comparer les patrons de réponses obtenues pour ces deux facteurs après des jeunes adultes et des personnes aînées. Pour les jeunes adultes, les résultats d’une analyse de régression séquentielle ont démontré qu’une mesure de la capacité auditive (taille de l’empan) était reliée à l’effort, tandis qu’une mesure du traitement auditif (rappel alphabétique) était reliée à la précision avec laquelle les mots étaient reconnus lorsqu’ils étaient présentés sous les conditions de double tâche. Cependant, ces mêmes relations n’étaient pas présentes dans les données obtenues pour le groupe de personnes aînées ni dans les données obtenues lorsque les tâches de reconnaissance de la parole étaient effectuées en modalité auditivo-visuelle. D’autres études sont nécessaires pour identifier les facteurs cognitifs qui sous-tendent l’effort associé à la perception de la parole, et ce, particulièrement chez les personnes aînées.
Resumo:
Les collisions proton-proton produites par le LHC imposent un environnement radiatif hostile au détecteur ATLAS. Afin de quantifier les effets de cet environnement sur la performance du détecteur et la sécurité du personnel, plusieurs simulations Monte Carlo ont été réalisées. Toutefois, la mesure directe est indispensable pour suivre les taux de radiation dans ATLAS et aussi pour vérifier les prédictions des simulations. À cette fin, seize détecteurs ATLAS-MPX ont été installés à différents endroits dans les zones expérimentale et technique d'ATLAS. Ils sont composés d'un détecteur au silicium à pixels appelé MPX dont la surface active est partiellement recouverte de convertisseurs de neutrons thermiques, lents et rapides. Les détecteurs ATLAS-MPX mesurent en temps réel les champs de radiation en enregistrant les traces des particules détectées sous forme d'images matricielles. L'analyse des images acquises permet d'identifier les types des particules détectées à partir des formes de leurs traces. Dans ce but, un logiciel de reconnaissance de formes appelé MAFalda a été conçu. Étant donné que les traces des particules fortement ionisantes sont influencées par le partage de charge entre pixels adjacents, un modèle semi-empirique décrivant cet effet a été développé. Grâce à ce modèle, l'énergie des particules fortement ionisantes peut être estimée à partir de la taille de leurs traces. Les convertisseurs de neutrons qui couvrent chaque détecteur ATLAS-MPX forment six régions différentes. L'efficacité de chaque région à détecter les neutrons thermiques, lents et rapides a été déterminée par des mesures d'étalonnage avec des sources connues. L'étude de la réponse des détecteurs ATLAS-MPX à la radiation produite par les collisions frontales de protons à 7TeV dans le centre de masse a montré que le nombre de traces enregistrées est proportionnel à la luminosité du LHC. Ce résultat permet d'utiliser les détecteurs ATLAS-MPX comme moniteurs de luminosité. La méthode proposée pour mesurer et étalonner la luminosité absolue avec ces détecteurs est celle de van der Meer qui est basée sur les paramètres des faisceaux du LHC. Vu la corrélation entre la réponse des détecteurs ATLAS-MPX et la luminosité, les taux de radiation mesurés sont exprimés en termes de fluences de différents types de particules par unité de luminosité intégrée. Un écart significatif a été obtenu en comparant ces fluences avec celles prédites par GCALOR qui est l'une des simulations Monte Carlo du détecteur ATLAS. Par ailleurs, les mesures effectuées après l'arrêt des collisions proton-proton ont montré que les détecteurs ATLAS-MPX permettent d'observer la désintégration des isotopes radioactifs générés au cours des collisions. L'activation résiduelle des matériaux d'ATLAS peut être mesurée avec ces détecteurs grâce à un étalonnage en équivalent de dose ambiant.
Resumo:
During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.
Resumo:
A new procedure for the classification of lower case English language characters is presented in this work . The character image is binarised and the binary image is further grouped into sixteen smaller areas ,called Cells . Each cell is assigned a name depending upon the contour present in the cell and occupancy of the image contour in the cell. A data reduction procedure called Filtering is adopted to eliminate undesirable redundant information for reducing complexity during further processing steps . The filtered data is fed into a primitive extractor where extraction of primitives is done . Syntactic methods are employed for the classification of the character . A decision tree is used for the interaction of the various components in the scheme . 1ike the primitive extraction and character recognition. A character is recognized by the primitive by primitive construction of its description . Openended inventories are used for including variants of the characters and also adding new members to the general class . Computer implementation of the proposal is discussed at the end using handwritten character samples . Results are analyzed and suggestions for future studies are made. The advantages of the proposal are discussed in detail .
Resumo:
Handwriting is an acquired tool used for communication of one's observations or feelings. Factors that inuence a person's handwriting not only dependent on the individual's bio-mechanical constraints, handwriting education received, writing instrument, type of paper, background, but also factors like stress, motivation and the purpose of the handwriting. Despite the high variation in a person's handwriting, recent results from different writer identification studies have shown that it possesses sufficient individual traits to be used as an identification method. Handwriting as a behavioral biometric has had the interest of researchers for a long time. But recently it has been enjoying new interest due to an increased need and effort to deal with problems ranging from white-collar crime to terrorist threats. The identification of the writer based on a piece of handwriting is a challenging task for pattern recognition. The main objective of this thesis is to develop a text independent writer identification system for Malayalam Handwriting. The study also extends to developing a framework for online character recognition of Grantha script and Malayalam characters
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.
Resumo:
Speech is a natural mode of communication for people and speech recognition is an intensive area of research due to its versatile applications. This paper presents a comparative study of various feature extraction methods based on wavelets for recognizing isolated spoken words. Isolated words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. This work includes two speech recognition methods. First one is a hybrid approach with Discrete Wavelet Transforms and Artificial Neural Networks and the second method uses a combination of Wavelet Packet Decomposition and Artificial Neural Networks. Features are extracted by using Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Training, testing and pattern recognition are performed using Artificial Neural Networks (ANN). The proposed method is implemented for 50 speakers uttering 20 isolated words each. The experimental results obtained show the efficiency of these techniques in recognizing speech
Resumo:
This paper reports a novel region-based shape descriptor based on orthogonal Legendre moments. The preprocessing steps for invariance improvement of the proposed Improved Legendre Moment Descriptor (ILMD) are discussed. The performance of the ILMD is compared to the MPEG-7 approved region shape descriptor, angular radial transformation descriptor (ARTD), and the widely used Zernike moment descriptor (ZMD). Set B of the MPEG-7 CE-1 contour database and all the datasets of the MPEG-7 CE-2 region database were used for experimental validation. The average normalized modified retrieval rate (ANMRR) and precision- recall pair were employed for benchmarking the performance of the candidate descriptors. The ILMD has lower ANMRR values than ARTD for most of the datasets, and ARTD has a lower value compared to ZMD. This indicates that overall performance of the ILMD is better than that of ARTD and ZMD. This result is confirmed by the precision-recall test where ILMD was found to have better precision rates for most of the datasets tested. Besides retrieval accuracy, ILMD is more compact than ARTD and ZMD. The descriptor proposed is useful as a generic shape descriptor for content-based image retrieval (CBIR) applications
Resumo:
Pedicle screw insertion technique has made revolution in the surgical treatment of spinal fractures and spinal disorders. Although X- ray fluoroscopy based navigation is popular, there is risk of prolonged exposure to X- ray radiation. Systems that have lower radiation risk are generally quite expensive. The position and orientation of the drill is clinically very important in pedicle screw fixation. In this paper, the position and orientation of the marker on the drill is determined using pattern recognition based methods, using geometric features, obtained from the input video sequence taken from CCD camera. A search is then performed on the video frames after preprocessing, to obtain the exact position and orientation of the drill. An animated graphics, showing the instantaneous position and orientation of the drill is then overlaid on the processed video for real time drill control and navigation
Resumo:
In this paper the effectiveness of a novel method of computer assisted pedicle screw insertion was studied using testing of hypothesis procedure with a sample size of 48. Pattern recognition based on geometric features of markers on the drill has been performed on real time optical video obtained from orthogonally placed CCD cameras. The study reveals the exactness of the calculated position of the drill using navigation based on CT image of the vertebra and real time optical video of the drill. The significance value is 0.424 at 95% confidence level which indicates good precision with a standard mean error of only 0.00724. The virtual vision method is less hazardous to both patient and the surgeon
Resumo:
There are a number of genes involved in the regulation of functional process in marine bivalves. In the case of pearl oyster, some of these genes have major role in the immune/defence function and biomineralization process involved in the pearl formation in them. As secondary filter feeders, pearl oysters are exposed to various kinds of stressors like bacteria, viruses, pesticides, industrial wastes, toxic metals and petroleum derivatives, making susceptible to diseases. Environmental changes and ambient stress also affect non-specific immunity, making the organisms vulnerable to infections. These stressors can trigger various cellular responses in the animals in their efforts to counteract the ill effects of the stress on them. These include the expression of defence related genes which encode factors such as antioxidant genes, pattern recognition receptor proteins etc. One of the strategies to combat these problems is to get insight into the disease resistance genes, and use them for disease control and health management. Similarly, although it is known that formation of pearl in molluscs is mediated by specialized proteins which are in turn regulated by specific genes encoding them, there is a paucity of sufficient information on these genes.In view of the above facts, studies on the defence related and pearl forming genes of the pearl oyster assumes importance from the point of view of both sustainable fishery management and aquaculture. At present, there is total lack of sufficient knowledge on the functional genes and their expressions in the Indian pearl oyster Pinctada fucata. Hence this work was taken up to identify and characterize the defence related and pearl forming genes, and study their expression through molecular means, in the Indian pearl oyster Pinctada fucata which are economically important for aquaculture at the southeast coast of India. The present study has successfully carried out the molecular identification, characterization and expression analysis of defence related antioxidant enzyme genes and pattern recognition proteins genes which play vital role in the defence against biotic and abiotic stressors. Antioxidant enzyme genes viz., Cu/Zn superoxide dismutase (Cu/Zn SOD), glutathione peroxidise (GPX) and glutathione-S-transferase (GST) were studied. Concerted approaches using the various molecular tools like polymerase chain reaction (PCR), random amplification of cDNA ends (RACE), molecular cloning and sequencing have resulted in the identification and characterization of full length sequences (924 bp) of the Cu/Zn SOD, most important antioxidant enzyme gene. BLAST search in NCBI confirmed the identity of the gene as Cu/Zn SOD. The presence of the characteristic amino acid sequences such as copper/zinc binding residues, family signature sequences and signal peptides were found out. Multiple sequence alignment comparison and phylogenetic analysis of the nucleotide and amino acid sequences using bioinformatics tools like BioEdit,MEGA etc revealed that the sequences were found to contain regions of diversity as well as homogeneity. Close evolutionary relationship between P. fucata and other aquatic invertebrates was revealed from the phylogenetic tree constructed using SOD amino acid sequence of P. fucata and other invertebrates as well as vertebrates