925 resultados para resource allocation
Resumo:
In this talk, I will describe various computational modelling and data mining solutions that form the basis of how the office of Deputy Head of Department (Resources) works to serve you. These include lessons I learn about, and from, optimisation issues in resource allocation, uncertainty analysis on league tables, modelling the process of winning external grants, and lessons we learn from student satisfaction surveys, some of which I have attempted to inject into our planning processes.
Resumo:
AIM: Studies have provided insights into factors that may facilitate or inhibit parent-infant closeness in neonatal units, but none have specifically focused on the perspectives of senior neonatal staff. The aim of this study was to explore perceptions and experiences of consultant neonatologists and senior nurses in five European countries with regard to these issues. METHODS: Six small group discussions and three one-to-one interviews were conducted with 16 consultant neonatologists and senior nurses representing nine neonatal units from Estonia, Finland, Norway, Spain and Sweden. The interviews explored facilitators and barriers to parent-infant closeness and implications for policy and practice and thematic analysis was undertaken. RESULTS: Participants highlighted how a humanising care agenda that enabled parent-infant closeness was an aspiration, but pointed out that neonatal units were at different stages in achieving this. The facilitators and barriers to physical closeness included socio-economic factors, cultural norms, the designs of neonatal units, resource issues, leadership, staff attitudes and practices and relationships between staff and parents. CONCLUSION: Various factors affected parent-infant closeness in neonatal units in European countries. There needs to be the political motivation, appropriate policy planning, legislation and resource allocation to increase measures that support closeness agendas in neonatal units. This article is protected by copyright. All rights reserved.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
BACKGROUND: The identification of patients' health needs is pivotal in optimising the quality of health care, increasing patient satisfaction and directing resource allocation. Health needs are complex and not so easily evaluated as health-related quality of life (HRQL), which is becoming increasingly accepted as a means of providing a more global, patient-orientated assessment of the outcome of health care interventions than the simple medical model. The potential of HRQL as a surrogate measure of healthcare needs has not been evaluated. OBJECTIVES AND METHOD: A generic (Short Form-12; SF-12) and a disease-specific questionnaire (Seattle Angina Questionnaire; SAQ) were tested for their potential to predict health needs in patients with acute coronary disease. A wide range of healthcare needs were determined using a questionnaire specifically developed for this purpose. RESULTS: With the exception of information needs, healthcare needs were highly correlated with health-related quality of life. Patients with limited enjoyment of personal interests, weak financial situation, greater dependency on others to access health services, and dissatisfaction with accommodation reported poorer HRQL (SF-12: p < 0.001; SAQ: p < 0.01). Difficulties with mobility, aids to daily living and activities requiring assistance from someone else were strongly associated with both generic and disease-specific questionnaires (SF-12: r = 0.46-0.55, p < 0.01; SAQ: r = 0.53-0.65, p < 0.001). Variables relating to quality of care and health services were more highly correlated with SAQ components (r = 0.33-0.59) than with SF-12 (r = 0.07-0.33). Overall, the disease-specific Seattle Angina Questionnaire was superior to the generic Short Form-12 in detecting healthcare needs in patients with coronary disease. Receiver-operator curves supported the sensitivity of HRQL tools in detecting health needs. CONCLUSION: Healthcare needs are complex and developing suitable questionnaires to measure these is difficult and time-consuming. Without a satisfactory means of measuring these needs, the extent to which disease impacts on health will continue to be underestimated. Further investigation on larger populations is warranted but HRQL tools appear to be a reasonable proxy for healthcare needs, as they identify the majority of needs in patients with coronary disease, an observation not previously reported in this patient group
Resumo:
Elasticity is one of the most known capabilities related to cloud computing, being largely deployed reactively using thresholds. In this way, maximum and minimum limits are used to drive resource allocation and deallocation actions, leading to the following problem statements: How can cloud users set the threshold values to enable elasticity in their cloud applications? And what is the impact of the applications load pattern in the elasticity? This article tries to answer these questions for iterative high performance computing applications, showing the impact of both thresholds and load patterns on application performance and resource consumption. To accomplish this, we developed a reactive and PaaS-based elasticity model called AutoElastic and employed it over a private cloud to execute a numerical integration application. Here, we are presenting an analysis of best practices and possible optimizations regarding the elasticity and HPC pair. Considering the results, we observed that the maximum threshold influences the application time more than the minimum one. We concluded that threshold values close to 100% of CPU load are directly related to a weaker reactivity, postponing resource reconfiguration when its activation in advance could be pertinent for reducing the application runtime.
Resumo:
Resource allocation decisions are made to serve the current emergency without knowing which future emergency will be occurring. Different ordered combinations of emergencies result in different performance outcomes. Even though future decisions can be anticipated with scenarios, previous models follow an assumption that events over a time interval are independent. This dissertation follows an assumption that events are interdependent, because speed reduction and rubbernecking due to an initial incident provoke secondary incidents. The misconception that secondary incidents are not common has resulted in overlooking a look-ahead concept. This dissertation is a pioneer in relaxing the structural assumptions of independency during the assignment of emergency vehicles. When an emergency is detected and a request arrives, an appropriate emergency vehicle is immediately dispatched. We provide tools for quantifying impacts based on fundamentals of incident occurrences through identification, prediction, and interpretation of secondary incidents. A proposed online dispatching model minimizes the cost of moving the next emergency unit, while making the response as close to optimal as possible. Using the look-ahead concept, the online model flexibly re-computes the solution, basing future decisions on present requests. We introduce various online dispatching strategies with visualization of the algorithms, and provide insights on their differences in behavior and solution quality. The experimental evidence indicates that the algorithm works well in practice. After having served a designated request, the available and/or remaining vehicles are relocated to a new base for the next emergency. System costs will be excessive if delay regarding dispatching decisions is ignored when relocating response units. This dissertation presents an integrated method with a principle of beginning with a location phase to manage initial incidents and progressing through a dispatching phase to manage the stochastic occurrence of next incidents. Previous studies used the frequency of independent incidents and ignored scenarios in which two incidents occurred within proximal regions and intervals. The proposed analytical model relaxes the structural assumptions of Poisson process (independent increments) and incorporates evolution of primary and secondary incident probabilities over time. The mathematical model overcomes several limiting assumptions of the previous models, such as no waiting-time, returning rule to original depot, and fixed depot. The temporal locations flexible with look-ahead are compared with current practice that locates units in depots based on Poisson theory. A linearization of the formulation is presented and an efficient heuristic algorithm is implemented to deal with a large-scale problem in real-time.
Resumo:
The central motif of this work is prediction and optimization in presence of multiple interacting intelligent agents. We use the phrase `intelligent agents' to imply in some sense, a `bounded rationality', the exact meaning of which varies depending on the setting. Our agents may not be `rational' in the classical game theoretic sense, in that they don't always optimize a global objective. Rather, they rely on heuristics, as is natural for human agents or even software agents operating in the real-world. Within this broad framework we study the problem of influence maximization in social networks where behavior of agents is myopic, but complication stems from the structure of interaction networks. In this setting, we generalize two well-known models and give new algorithms and hardness results for our models. Then we move on to models where the agents reason strategically but are faced with considerable uncertainty. For such games, we give a new solution concept and analyze a real-world game using out techniques. Finally, the richest model we consider is that of Network Cournot Competition which deals with strategic resource allocation in hypergraphs, where agents reason strategically and their interaction is specified indirectly via player's utility functions. For this model, we give the first equilibrium computability results. In all of the above problems, we assume that payoffs for the agents are known. However, for real-world games, getting the payoffs can be quite challenging. To this end, we also study the inverse problem of inferring payoffs, given game history. We propose and evaluate a data analytic framework and we show that it is fast and performant.
Resumo:
Over the last decade, success of social networks has significantly reshaped how people consume information. Recommendation of contents based on user profiles is well-received. However, as users become dominantly mobile, little is done to consider the impacts of the wireless environment, especially the capacity constraints and changing channel. In this dissertation, we investigate a centralized wireless content delivery system, aiming to optimize overall user experience given the capacity constraints of the wireless networks, by deciding what contents to deliver, when and how. We propose a scheduling framework that incorporates content-based reward and deliverability. Our approach utilizes the broadcast nature of wireless communication and social nature of content, by multicasting and precaching. Results indicate this novel joint optimization approach outperforms existing layered systems that separate recommendation and delivery, especially when the wireless network is operating at maximum capacity. Utilizing limited number of transmission modes, we significantly reduce the complexity of the optimization. We also introduce the design of a hybrid system to handle transmissions for both system recommended contents ('push') and active user requests ('pull'). Further, we extend the joint optimization framework to the wireless infrastructure with multiple base stations. The problem becomes much harder in that there are many more system configurations, including but not limited to power allocation and how resources are shared among the base stations ('out-of-band' in which base stations transmit with dedicated spectrum resources, thus no interference; and 'in-band' in which they share the spectrum and need to mitigate interference). We propose a scalable two-phase scheduling framework: 1) each base station obtains delivery decisions and resource allocation individually; 2) the system consolidates the decisions and allocations, reducing redundant transmissions. Additionally, if the social network applications could provide the predictions of how the social contents disseminate, the wireless networks could schedule the transmissions accordingly and significantly improve the dissemination performance by reducing the delivery delay. We propose a novel method utilizing: 1) hybrid systems to handle active disseminating requests; and 2) predictions of dissemination dynamics from the social network applications. This method could mitigate the performance degradation for content dissemination due to wireless delivery delay. Results indicate that our proposed system design is both efficient and easy to implement.
Resumo:
In energy harvesting communications, users transmit messages using energy harvested from nature. In such systems, transmission policies of the users need to be carefully designed according to the energy arrival profiles. When the energy management policies are optimized, the resulting performance of the system depends only on the energy arrival profiles. In this dissertation, we introduce and analyze the notion of energy cooperation in energy harvesting communications where users can share a portion of their harvested energy with the other users via wireless energy transfer. This energy cooperation enables us to control and optimize the energy arrivals at users to the extent possible. In the classical setting of cooperation, users help each other in the transmission of their data by exploiting the broadcast nature of wireless communications and the resulting overheard information. In contrast to the usual notion of cooperation, which is at the signal level, energy cooperation we introduce here is at the battery energy level. In a multi-user setting, energy may be abundant in one user in which case the loss incurred by transferring it to another user may be less than the gain it yields for the other user. It is this cooperation that we explore in this dissertation for several multi-user scenarios, where energy can be transferred from one user to another through a separate wireless energy transfer unit. We first consider the offline optimal energy management problem for several basic multi-user network structures with energy harvesting transmitters and one-way wireless energy transfer. In energy harvesting transmitters, energy arrivals in time impose energy causality constraints on the transmission policies of the users. In the presence of wireless energy transfer, energy causality constraints take a new form: energy can flow in time from the past to the future for each user, and from one user to the other at each time. This requires a careful joint management of energy flow in two separate dimensions, and different management policies are required depending on how users share the common wireless medium and interact over it. In this context, we analyze several basic multi-user energy harvesting network structures with wireless energy transfer. To capture the main trade-offs and insights that arise due to wireless energy transfer, we focus our attention on simple two- and three-user communication systems, such as the relay channel, multiple access channel and the two-way channel. Next, we focus on the delay minimization problem for networks. We consider a general network topology of energy harvesting and energy cooperating nodes. Each node harvests energy from nature and all nodes may share a portion of their harvested energies with neighboring nodes through energy cooperation. We consider the joint data routing and capacity assignment problem for this setting under fixed data and energy routing topologies. We determine the joint routing of energy and data in a general multi-user scenario with data and energy transfer. Next, we consider the cooperative energy harvesting diamond channel, where the source and two relays harvest energy from nature and the physical layer is modeled as a concatenation of a broadcast and a multiple access channel. Since the broadcast channel is degraded, one of the relays has the message of the other relay. Therefore, the multiple access channel is an extended multiple access channel with common data. We determine the optimum power and rate allocation policies of the users in order to maximize the end-to-end throughput of this system. Finally, we consider the two-user cooperative multiple access channel with energy harvesting users. The users cooperate at the physical layer (data cooperation) by establishing common messages through overheard signals and then cooperatively sending them. For this channel model, we investigate the effect of intermittent data arrivals to the users. We find the optimal offline transmit power and rate allocation policy that maximize the departure region. When the users can further cooperate at the battery level (energy cooperation), we find the jointly optimal offline transmit power and rate allocation policy together with the energy transfer policy that maximize the departure region.
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.
Resumo:
Many important problems in communication networks, transportation networks, and logistics networks are solved by the minimization of cost functions. In general, these can be complex optimization problems involving many variables. However, physicists noted that in a network, a node variable (such as the amount of resources of the nodes) is connected to a set of link variables (such as the flow connecting the node), and similarly each link variable is connected to a number of (usually two) node variables. This enables one to break the problem into local components, often arriving at distributive algorithms to solve the problems. Compared with centralized algorithms, distributed algorithms have the advantages of lower computational complexity, and lower communication overhead. Since they have a faster response to local changes of the environment, they are especially useful for networks with evolving conditions. This review will cover message-passing algorithms in applications such as resource allocation, transportation networks, facility location, traffic routing, and stability of power grids.
Resumo:
Ethos is the spirit that motivates ideas and practices. When we talk casually about the ethos of a town, state, or country we are describing the fundamental or at least underlying rationale for action, as we see it. Ideology is a way of looking at things.It is the set of ideas that constitute one’s goals, expectations, and actions. In this brief essay I want to create a space where we might talk about the ethos and ideology in knowledge organization from a particular point of view; combining ideas and inspiration from the Arts and Crafts movement of the early Twentieth Century, critical theory in extant knowledge organization work, the work of Slavoj Žižek, and the work of Thich Nhat Hahn on Engaged Buddhism.I will expand more below, but we can say here and now that there are many open questions about ethos and ideology in and of knowledge organization, both its practice and products. Many of them in classification, positioned as they are around identity politics of race, gender, and other marginalized groups, ask the classificationist to be mindful of the choice of terms and relationships between terms. From this work we understand that race and gender requires special consideration, which manifests as a particular concern for the form of representation inside extant schemes. Even with these advances in our understanding there are still other categories about which we must make decisions and take action. For example, there are ethical decisions about fiduciary resource allocation, political decisions about standards adoption, and even broader zeitgeist considerations like the question of Fordist conceptions (Day, 2001; Tennis 2006) of the mechanics of description and representation present in much of today’s practice.Just as taking action in a particular way is an ethical concern, so too is avoiding a lack of action. Scholars in Knowledge Organization have also looked at the absence of what we might call right action in the context of cataloguing and classification. This leads to some problems above, and hints at larger ethical concerns of watching a subtle semantic violence go on without intervention (Bowker and Star, 2001; Bade 2006).The problem is not to act or not act, but how to act or not act in an ethical way, or at least with ethical considerations. The action advocated by an ethical consideration for knowledge organization is an engaged one, and it is here where we can take a nod from contemporary ethical theory advanced by Engaged Buddhism. In this context we can see the manifestation of fourteen precepts that guide ethical action, and warn against lack of action.
Resumo:
The large scale development of an Intelligent Transportation System is very close. The main component of such a smart environment is the network that provides connectivity for all vehicles. Public safety is the most demanding application because requires a fast, reliable and secure communication. Although IEEE 802.11p is presently the only full wireless standard for vehicular communications, recent advancements in 3GPP LTE provide support to direct communications and the ongoing activities are also addressing the vehicle to vehicle case. This thesis focuses on the resource allocation procedures and performance of LTE-V2V. To this aim, a MATLAB simulator has been implemented and results have been obtained adopting different mobility models for both in-coverage and out-of-coverage scenarios.
Resumo:
A High-Performance Computing job dispatcher is a critical software that assigns the finite computing resources to submitted jobs. This resource assignment over time is known as the on-line job dispatching problem in HPC systems. The fact the problem is on-line means that solutions must be computed in real-time, and their required time cannot exceed some threshold to do not affect the normal system functioning. In addition, a job dispatcher must deal with a lot of uncertainty: submission times, the number of requested resources, and duration of jobs. Heuristic-based techniques have been broadly used in HPC systems, at the cost of achieving (sub-)optimal solutions in a short time. However, the scheduling and resource allocation components are separated, thus generates a decoupled decision that may cause a performance loss. Optimization-based techniques are less used for this problem, although they can significantly improve the performance of HPC systems at the expense of higher computation time. Nowadays, HPC systems are being used for modern applications, such as big data analytics and predictive model building, that employ, in general, many short jobs. However, this information is unknown at dispatching time, and job dispatchers need to process large numbers of them quickly while ensuring high Quality-of-Service (QoS) levels. Constraint Programming (CP) has been shown to be an effective approach to tackle job dispatching problems. However, state-of-the-art CP-based job dispatchers are unable to satisfy the challenges of on-line dispatching, such as generate dispatching decisions in a brief period and integrate current and past information of the housing system. Given the previous reasons, we propose CP-based dispatchers that are more suitable for HPC systems running modern applications, generating on-line dispatching decisions in a proper time and are able to make effective use of job duration predictions to improve QoS levels, especially for workloads dominated by short jobs.