882 resultados para redes neurais


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research proposes a methodology to improve computed individual prediction values provided by an existing regression model without having to change either its parameters or its architecture. In other words, we are interested in achieving more accurate results by adjusting the calculated regression prediction values, without modifying or rebuilding the original regression model. Our proposition is to adjust the regression prediction values using individual reliability estimates that indicate if a single regression prediction is likely to produce an error considered critical by the user of the regression. The proposed method was tested in three sets of experiments using three different types of data. The first set of experiments worked with synthetically produced data, the second with cross sectional data from the public data source UCI Machine Learning Repository and the third with time series data from ISO-NE (Independent System Operator in New England). The experiments with synthetic data were performed to verify how the method behaves in controlled situations. In this case, the outcomes of the experiments produced superior results with respect to predictions improvement for artificially produced cleaner datasets with progressive worsening with the addition of increased random elements. The experiments with real data extracted from UCI and ISO-NE were done to investigate the applicability of the methodology in the real world. The proposed method was able to improve regression prediction values by about 95% of the experiments with real data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta pesquisa visa a análise da contribuição de cinco variáveis de entrada e a otimização do desempenho termo-hidráulico de trocadores de calor com venezianas combinados com geradores de vórtices delta-winglets. O desempenho termohidráulico de duas geometrias distintas, aqui nomeadas por GEO1 e GEO2, foram avaliadas. Smoothing Spline ANOVA foi usado para avaliar a contribuição dos parâmetros de entrada na transferência de calor e perda de carga. Considerando aplicação automotiva, foram investigados números de Reynolds iguais a 120 e 240, baseados no diâmetro hidráulico. Os resultados indicaram que o ângulo de venezianas é o maior contribuidor para o aumento do fator de atrito para GEO1 e GEO2, para ambos os números de Reynolds. Para o número de Reynolds menor, o parâmetro mais importante em termos de transferência de calor foi o ângulo das venezianas para ambas as geometrias. Para o número de Reynolds maior, o ângulo de ataque dos geradores de vórtices posicionados na primeira fileira é o maior contribuidor para a tranfesferência de calor, no caso da geometria GEO1, enquanto que o ângulo de ataque dos geradores de vórtices na primeira fileira foi tão importante quanto os ângulos das venezianas para a geometria GEO2. Embora as geometrias analisadas possam ser consideradas como técnicas compostas de intensificação da transferência de calor, não foram observadas interações relevantes entre ângulo de venezianas e parâmetros dos geradores de vórtices. O processo de otimização usa NSGA-II (Non-Dominated Sorting Genetic Algorithm) combinado com redes neurais artificiais. Os resultados mostraram que a adição dos geradores de vórtices em GEO1 aumentaram a transferência de calor em 21% e 23% com aumentos na perda de carga iguais a 24,66% e 36,67% para o menor e maior números de Reynolds, respectivamente. Para GEO2, a transferência de calor aumentou 13% e 15% com aumento na perda de carga de 20,33% e 23,70%, para o menor e maior número de Reynolds, respectivamente. As soluções otimizadas para o fator de Colburn mostraram que a transferência de calor atrás da primeira e da segunda fileiras de geradores de vórtices tem a mesma ordem de magnitude para ambos os números de Reynolds. Os padrões de escoamento e as características de transferência de calor das soluções otimizadas apresentaram comportamentos vi particulares, diferentemente daqueles encontrados quando as duas técnicas de intensificação de transferência de calor são aplicadas separadamente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A avaliação perceptivo-auditiva tem papel fundamental no estudo e na avaliação da voz, no entanto, por ser subjetiva está sujeita a imprecisões e variações. Por outro lado, a análise acústica permite a reprodutibilidade de resultados, porém precisa ser aprimorada, pois não analisa com precisão vozes com disfonias mais intensas e com ondas caóticas. Assim, elaborar medidas que proporcionem conhecimentos confiáveis em relação à função vocal resulta de uma necessidade antiga dentro desta linha de pesquisa e atuação clínica. Neste contexto, o uso da inteligência artificial, como as redes neurais artificiais, indica ser uma abordagem promissora. Objetivo: Validar um sistema automático utilizando redes neurais artificiais para a avaliação de vozes rugosas e soprosas. Materiais e métodos: Foram selecionadas 150 vozes, desde neutras até com presença em grau intenso de rugosidade e/ou soprosidade, do banco de dados da Clínica de Fonoaudiologia da Faculdade de Odontologia de Bauru (FOB/USP). Dessas vozes, 23 foram excluídas por não responderem aos critérios de inclusão na amostra, assim utilizaram-se 123 vozes. Procedimentos: avaliação perceptivo-auditiva pela escala visual analógica de 100 mm e pela escala numérica de quatro pontos; extração de características do sinal de voz por meio da Transformada Wavelet Packet e dos parâmetros acústicos: jitter, shimmer, amplitude da derivada e amplitude do pitch; e validação do classificador por meio da parametrização, treino, teste e avaliação das redes neurais artificiais. Resultados: Na avaliação perceptivo-auditiva encontrou-se, por meio do teste Coeficiente de Correlação Intraclasse (CCI), concordâncias inter e intrajuiz excelentes, com p = 0,85 na concordância interjuízes e p variando de 0,87 a 0,93 nas concordâncias intrajuiz. Em relação ao desempenho da rede neural artificial, na discriminação da soprosidade e da rugosidade e dos seus respectivos graus, encontrou-se o melhor desempenho para a soprosidade no subconjunto composto pelo jitter, amplitude do pitch e frequência fundamental, no qual obteve-se taxa de acerto de 74%, concordância excelente com a avaliação perceptivo-auditiva da escala visual analógica (0,80 no CCI) e erro médio de 9 mm. Para a rugosidade, o melhor subconjunto foi composto pela Transformada Wavelet Packet com 1 nível de decomposição, jitter, shimmer, amplitude do pitch e frequência fundamental, no qual obteve-se 73% de acerto, concordância excelente (0,84 no CCI), e erro médio de 10 mm. Conclusão: O uso da inteligência artificial baseado em redes neurais artificiais na identificação, e graduação da rugosidade e da soprosidade, apresentou confiabilidade excelente (CCI > 0,80), com resultados semelhantes a concordância interjuízes. Dessa forma, a rede neural artificial revela-se como uma metodologia promissora de avaliação vocal, tendo sua maior vantagem a objetividade na avaliação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta uma nova metodologia para otimizar carteiras de ativos financeiros. A metodologia proposta, baseada em interpoladores universais tais quais as Redes Neurais Artificiais e a Krigagem, permite aproximar a superfície de risco e consequentemente a solução do problema de otimização associado a ela de forma generalizada e aplicável a qualquer medida de risco disponível na literatura. Além disto, a metodologia sugerida permite que sejam relaxadas hipóteses restritivas inerentes às metodologias existentes, simplificando o problema de otimização e permitindo que sejam estimados os erros na aproximação da superfície de risco. Ilustrativamente, aplica-se a metodologia proposta ao problema de composição de carteiras com a Variância (controle), o Valor-em-Risco (VaR) e o Valor-em-Risco Condicional (CVaR) como funções objetivo. Os resultados são comparados àqueles obtidos pelos modelos de Markowitz e Rockafellar, respectivamente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Existe um problema de representação em processamento de linguagem natural, pois uma vez que o modelo tradicional de bag-of-words representa os documentos e as palavras em uma unica matriz, esta tende a ser completamente esparsa. Para lidar com este problema, surgiram alguns métodos que são capazes de representar as palavras utilizando uma representação distribuída, em um espaço de dimensão menor e mais compacto, inclusive tendo a propriedade de relacionar palavras de forma semântica. Este trabalho tem como objetivo utilizar um conjunto de documentos obtido através do projeto Media Cloud Brasil para aplicar o modelo skip-gram em busca de explorar relações e encontrar padrões que facilitem na compreensão do conteúdo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The object of this study is the construction of metaphor and metonymy in comics. This work is inserted in the field of Embodied Cognitive Linguistics, specifically based on the Neural Theory of Language (FELDMAN, 2006) and, consistent with this theoretical and methodological framework, the notions of categorization (LAKOFF & JOHNSON, 1999), embodiment (GIBBS, 2005), figurativity (GIBBS, 1994; BERGEN, 2005), and mental simulation (BARSALOU, 1999; FELDMAN, 2006) have also been used. The hypothesis defended is that the construction of figurativity in texts consisting of verbal and nonverbal mechanisms is linked to the activation of neural structures related to our actions and perceptions. Thus, language is considered a cognitive faculty connected to the brain apparatus and to bodily experiences, in such a way that it provides samples of the continuous process of meaning (re)construction performed by the reader, whom (re)defines his or her views about the world as certain neural networks are (or stop being) activated during linguistic processing. The data obtained during the analysys shows that, as regards comics, the act of reading together the graphics and verbal language seems to have an important role in the construction of figurativity, including cases of metaphors which are metonymically motivated. These preliminary conclusions were drawn from the data analysis taken from V de Vingança (MOORE; LLOYD, 2006). The corpus study was guided by the methodology of introspection, i.e., the individual analysis of linguistic aspects as manifested in one's own cognition (TALMY, 2005).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Valve stiction, or static friction, in control loops is a common problem in modern industrial processes. Recently, many studies have been developed to understand, reproduce and detect such problem, but quantification still remains a challenge. Since the valve position (mv) is normally unknown in an industrial process, the main challenge is to diagnose stiction knowing only the output signals of the process (pv) and the control signal (op). This paper presents an Artificial Neural Network approach in order to detect and quantify the amount of static friction using only the pv and op information. Different methods for preprocessing the training set of the neural network are presented. Those methods are based on the calculation of centroid and Fourier Transform. The proposal is validated using a simulated process and the results show a satisfactory measurement of stiction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work consists basically in the elaboration of an Artificial Neural Network (ANN) in order to model the composites materials’ behavior when submitted to fatigue loadings. The proposal is to develop and present a mixed model, which associate an analytical equation (Adam Equation) to the structure of the ANN. Given that the composites often shows a similar behavior when subject to float loadings, this equation aims to establish a pre-defined comparison pattern for a generic material, so that the ANN fit the behavior of another composite material to that pattern. In this way, the ANN did not need to fully learn the behavior of a determined material, because the Adam Equation would do the big part of the job. This model was used in two different network architectures, modular and perceptron, with the aim of analyze it efficiency in distinct structures. Beyond the different architectures, it was analyzed the answers generated from two sets of different data – with three and two SN curves. This model was also compared to the specialized literature results, which use a conventional structure of ANN. The results consist in analyze and compare some characteristics like generalization capacity, robustness and the Goodman Diagrams, developed by the networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advanced Oxidation Processes (AOP) are techniques involving the formation of hydroxyl radical (HO•) with high organic matter oxidation rate. These processes application in industry have been increasing due to their capacity of degrading recalcitrant substances that cannot be completely removed by traditional processes of effluent treatment. In the present work, phenol degrading by photo-Fenton process based on addition of H2O2, Fe2+ and luminous radiation was studied. An experimental design was developed to analyze the effect of phenol, H2O2 and Fe2+ concentration on the fraction of total organic carbon (TOC) degraded. The experiments were performed in a batch photochemical parabolic reactor with 1.5 L of capacity. Samples of the reactional medium were collected at different reaction times and analyzed in a TOC measurement instrument from Shimadzu (TOC-VWP). The results showed a negative effect of phenol concentration and a positive effect of the two other variables in the TOC degraded fraction. A statistical analysis of the experimental design showed that the hydrogen peroxide concentration was the most influent variable in the TOC degraded fraction at 45 minutes and generated a model with R² = 0.82, which predicted the experimental data with low precision. The Visual Basic for Application (VBA) tool was used to generate a neural networks model and a photochemical database. The aforementioned model presented R² = 0.96 and precisely predicted the response data used for testing. The results found indicate the possible application of the developed tool for industry, mainly for its simplicity, low cost and easy access to the program.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work is to use algorithms known as Boltzmann Machine to rebuild and classify patterns as images. This algorithm has a similar structure to that of an Artificial Neural Network but network nodes have stochastic and probabilistic decisions. This work presents the theoretical framework of the main Artificial Neural Networks, General Boltzmann Machine algorithm and a variation of this algorithm known as Restricted Boltzmann Machine. Computer simulations are performed comparing algorithms Artificial Neural Network Backpropagation with these algorithms Boltzmann General Machine and Machine Restricted Boltzmann. Through computer simulations are analyzed executions times of the different described algorithms and bit hit percentage of trained patterns that are later reconstructed. Finally, they used binary images with and without noise in training Restricted Boltzmann Machine algorithm, these images are reconstructed and classified according to the bit hit percentage in the reconstruction of the images. The Boltzmann machine algorithms were able to classify patterns trained and showed excellent results in the reconstruction of the standards code faster runtime and thus can be used in applications such as image recognition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BARBOSA, André F. ; SOUZA, Bryan C. ; PEREIRA JUNIOR, Antônio ; MEDEIROS, Adelardo A. D.de, . Implementação de Classificador de Tarefas Mentais Baseado em EEG. In: CONGRESSO BRASILEIRO DE REDES NEURAIS, 9., 2009, Ouro Preto, MG. Anais... Ouro Preto, MG, 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BARBOSA, André F. ; SOUZA, Bryan C. ; PEREIRA JUNIOR, Antônio ; MEDEIROS, Adelardo A. D.de, . Implementação de Classificador de Tarefas Mentais Baseado em EEG. In: CONGRESSO BRASILEIRO DE REDES NEURAIS, 9., 2009, Ouro Preto, MG. Anais... Ouro Preto, MG, 2009

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Physiologists and animal scientists try to understand the relationship between ruminants and their environment. The knowledge about feeding behavior of these animals is the key to maximize the production of meat and milk and their derivatives and ensure animal welfare. Within the area called precision farming, one of the goals is to find a model that describes animal nutrition. Existing methods for determining the consumption and ingestive patterns are often time-consuming and imprecise. Therefore, an accurate and less laborious method may be relevant for feeding behaviour recognition. Surface electromyography (sEMG) is able to provide information of muscle activity. Through sEMG of the muscles of mastication, coupled with instrumentation techniques, signal processing and data classification, it is possible to extract the variables of interest that describe chewing activity. This work presents a new method for chewing pattern evaluation, feed intake prediction and for the determination of rumination, food and daily rest time through ruminant animals masseter muscle sEMG signals. Short-term evaluation results are shown and discussed, evidencing employed methods viability.