999 resultados para quantum fields
Resumo:
We present a scheme which offers a significant reduction in the resources required to implement linear optics quantum computing. The scheme is a variation of the proposal of Knill, Laflamme and Milburn, and makes use of an incremental approach to the error encoding to boost probability of success.
Resumo:
We obtain a class of non-diagonal solutions of the reflection equation for the trigonometric A(n-1)((1)) vertex model. The solutions can be expressed in terms of intertwinner matrix and its inverse, which intertwine two trigonometric R-matrices. In addition to a discrete (positive integer) parameter l, 1 less than or equal to l less than or equal to n, the solution contains n + 2 continuous boundary parameters.
Resumo:
In 1966 the Brazilian physicist Klaus Tausk (b. 1927) circulated a preprint from the International Centre for Theoretical Physics in Trieste, Italy, criticizing Adriana Daneri, Angelo Loinger, and Giovanni Maria Prosperi`s theory of 1962 on the measurement problem in quantum mechanics. A heated controversy ensued between two opposing camps within the orthodox interpretation of quantum theory, represented by Leon Rosenfeld and Eugene P. Wigner. The controversy went well beyond the strictly scientific issues, however, reflecting philosophical and political commitments within the context of the Cold War, the relationship between science in developed and Third World countries, the importance of social skills, and personal idiosyncrasies.
Resumo:
We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.
Resumo:
The main problem with current approaches to quantum computing is the difficulty of establishing and maintaining entanglement. A Topological Quantum Computer (TQC) aims to overcome this by using different physical processes that are topological in nature and which are less susceptible to disturbance by the environment. In a (2+1)-dimensional system, pseudoparticles called anyons have statistics that fall somewhere between bosons and fermions. The exchange of two anyons, an effect called braiding from knot theory, can occur in two different ways. The quantum states corresponding to the two elementary braids constitute a two-state system allowing the definition of a computational basis. Quantum gates can be built up from patterns of braids and for quantum computing it is essential that the operator describing the braiding-the R-matrix-be described by a unitary operator. The physics of anyonic systems is governed by quantum groups, in particular the quasi-triangular Hopf algebras obtained from finite groups by the application of the Drinfeld quantum double construction. Their representation theory has been described in detail by Gould and Tsohantjis, and in this review article we relate the work of Gould to TQC schemes, particularly that of Kauffman.
Resumo:
We explore the task of optimal quantum channel identification and in particular, the estimation of a general one-parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.
Resumo:
We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic electrodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below threshold.
Resumo:
We study the effects of driving a two-level atom by two intense field modes that have equal frequencies but are otherwise distinguishable; the intensity of one mode is also assumed to be greater than that of the other. We calculate first the dressed states of the system, and then its resonance fluorescence and Autler-Townes absorption spectra. We find that the energy spectrum of the doubly dressed atom consists of a ladder of doublet continua. These continua manifest themselves in the fluorescence spectrum, where they produce continua at the positions of the Mellow sideband frequencies omega(L)+/-2 Omega of the strong field, and in the Autler-Townes absorption spectrum, which becomes a two-continuum doublet.
Resumo:
Magneto-transport measurements of the 2D hole system (2DHS) in p-type Si-Si1-xGex heterostructures identify the integer quantum Hall effect (IQHE) at dominantly odd-integer filling factors v and two low-temperature insulating phases (IPs) at v = 1.5 and v less than or similar to 0.5, with re-entrance to the quantum Hall effect at v = 1. The temperature dependence, current-voltage characteristics, and tilted field and illumination responses of the IP at v = 1.5 indicate that the important physics is associated with an energy degeneracy of adjacent Landau levels of opposite spin, which provides a basis for consideration of an intrinsic, many-body origin.
Resumo:
A method is presented for computing the fields produced by radio frequency probes of the type used in magnetic resonance imaging. The effects of surrounding the probe with a shielding coil, intended to eliminate stray fields produced outside the probe, are included. An essential feature of these devices is the fact that the conducting rungs of the probe are of finite width relative to the coil radius, and it is therefore necessary to find the distribution of current within the conductors as part of the solution process. This is done here using a numerical method based on the inverse finite Hilbert transform, applied iteratively to the entire structure including its shielding coils. It is observed that the fields are influenced substantially by the width of the conducting rungs of the probe, since induced eddy currents within the rungs become more pronounced as their width is increased. The shield is also shown to have a significant effect on both the primary current density and the resultant fields. Quality factors are computed for these probes and compared with values measured experimentally.
Resumo:
We present a general prescription for the construction of integrable one-dimensional systems with closed boundary conditions and quantum supersymmetry.
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
We present an anisotropic correlated electron model on a periodic lattice, constructed from an R-matrix associated with the Temperley-Lieb algebra. By modification of the coupling of the first and last sites we obtain a model with quantum algebra invariance.
Resumo:
Quantum Lie algebras are generalizations of Lie algebras which have the quantum parameter h built into their structure. They have been defined concretely as certain submodules L-h(g) of the quantized enveloping algebras U-h(g). On them the quantum Lie product is given by the quantum adjoint action. Here we define for any finite-dimensional simple complex Lie algebra g an abstract quantum Lie algebra g(h) independent of any concrete realization. Its h-dependent structure constants are given in terms of inverse quantum Clebsch-Gordan coefficients. We then show that all concrete quantum Lie algebras L-h(g) are isomorphic to an abstract quantum Lie algebra g(h). In this way we prove two important properties of quantum Lie algebras: 1) all quantum Lie algebras L-h(g) associated to the same g are isomorphic, 2) the quantum Lie product of any Ch(B) is q-antisymmetric. We also describe a construction of L-h(g) which establishes their existence.
Resumo:
We consider the quantum dynamics of a neutral atom Bose-Einstein condensate in a double-well potential, including many-body hard-sphere interactions. Using a mean-field factorization we show that the coherent oscillations due to tunneling are suppressed when the number of atoms exceeds a critical value. An exact quantum solution, in a two-mode approximation, shows that the mean-field solution is modulated by a quantum collapse and revival sequence.