973 resultados para protocollo TCP, protocollo UDP, Westwood, SACK
Resumo:
A substituted porphyrin bearing four crown ether units, H(2)(TCP), was synthesized from the reaction between (5,10,15,20-tetra(o-aminophenyl) porphyrin) and the acyl derivative of the ether (4-carboxy-18-crown-6). The free-base porphyrin was characterized by C, N, and H elemental analysis; UV-vis and IR spectroscopies; and (1)H NMR. The corresponding ironporphyrin, Fe(TCP)Cl, was obtained via iron insertion into H(2)(TCP). Fe(TCP)Cl was employed as catalyst for carbamazepine (CBZ) oxidation by iodosylbenzene (PhIO), 3-chloroperoxybenzoic acid (m-CPBA) or sodium hypochlorite (NaOCl), in methanol or in a biphasic water/dichloroethane system. The crowned ironporphyrin proved to be a highly efficient and selective catalyst for CBZ epoxidation even in the biphasic dichloroethane /H(2)O system, with no need for an additional phase transfer agent.
Resumo:
Natural killer (NK) cells are innate effector lymphocytes necessary for defence against stressed, microbe-infected, or malignant cells. NK cells kill target cells by either of two major mechanisms that require direct contact between NK cells and target cells. In the first pathway, cytoplasmic granule toxins, predominantly a membrane-disrupting protein known as perforin, and a family of structurally related serine C, proteases (granzymes) with various substrate specificities, are secreted by exocytosis and together induce apoptosis of the target cell. The granule-exocytosis pathway potently activates cell-death mechanisms that operate through the activation of apoptotic cysteine proteases (caspases), but can also cause cell death in the absence of activated caspases. The second pathway involves the engagement of death receptors (e.g. Fas/CD95) on target cells by their cognate ligands (e.g. FasL on NK cells, resulting in classical caspase-dependent apoptosis. The comparative role of these pathways in the pathophysiology of many diseases is being dissected by analyses of gene-targeted mice that lack these molecules, and humans who have genetic mutations affecting these pathways. We are also now learning that the effector function of NK cells is controlled by interactions involving specific NK cell receptors and their cognate ligands, either on target cells, or other cells of the immune system. This review will discuss the functional importance of NK cell cytotoxicity and the receptor/ligand interactions that control these processes. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Neotropical species of Gasteruption Latreille are revised, described, diagnosed, and illustrated; a key for females is provided. Twenty six valid species are recognized, thirteen of which are described as new: G. amputatum Townes, G. barnstoni (Westwood), G. bertae n. sp., G. bispinosum Kieffer, G. brachychaetum Schrottky, G. brandaoi n. sp., G. brasiliense (Blanchard), G. floridanum (Bradley), G. glauciae n. sp., G. guildingi (Westwood), G. hansoni n. sp., G. helenae n. sp., G. huberi n. sp., G. kaweahense (Bradley), G. lianae n. sp., G. loiaconoae n. sp., G. masneri n. sp., G. oliveirai n. sp., G. parvum Schrottky, G. rafaeli n. sp., G. sartor Schletterer, G. smithi n. sp., G. tenue Kieffer, G. townesi (Alayo), G. visaliae (Bradley), and G. wahli n. sp. The following new synonymies are proposed: G. maculicorne Cameron, G. macroderum Schletterer, and G. zapotecum Schletterer with G. barnstoni; G. bihamatum Kieffer, G. fallens Kieffer, G. fiebrigi Schrottky, G. leptodomum Kieffer, G. montivagum Kieffer, and G. strandi Kieffer with G. bispinosum; G. annulitarse Schrottky, G. brasiliae Kieffer, G. gracillimum (Schletterer), G. longicauda Kieffer, G. petroselini Schrottky, G. subtropicale Schrottky and G. torridum (Bradley) with G. brasiliense; G. rufipectus (Westwood) with G. guildingi; G. angustatum (Kieffer) with G. kaweahense; G. horni Brethes with G. parvum. The following taxa are considered as species inquirendae: G. albitarse Schletterer, G. austini Jennings and Smith, G. subcoriaceum Kieffer n. stat., and G. tenuicolle Schletterer. As well, G rubrum Taschenberg is synonymized with Pseudofoenus infumatus (Schletterer). In addition, G. tenue Pasteels, 1957a from Australia is a junior homonym of G. tenue Kieffer, 1922 and is renamed G. pasteelsi n. name.
Resumo:
Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.
Resumo:
Patients with Gilbert Syndrome have an impaired function of the enzyme UGT1A1, responsible for the degradation of 4-OH-estrogens. These elements are produced by the degradation of estrogens and are well-known carcinogens. In theory, patients with Gilbert Syndrome accumulate 4-OH-estrogens and, therefore, might have a higher risk for breast cancer, especially when exposed to higher levels of estrogens. If this theory is true, a new risk group for breast cancer would be described, producing new insights in breast carcinogenesis. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
There is a considerable interindividual variation in L-thyroxine [ 3,5,3`,5`-tetraiodo-l-thyronine (T(4))] dose required for thyrotropin (thyroid-stimulating hormone) suppression in patients with differentiated thyroid cancer. To investigate whether uridine diphosphate-glucuronosyl transferase 1A1 (UGT1A1)-mediated T(4) glucuronidation in liver affects T(4) dose, we genotyped 101 patients for the common UGT1A1-53(TA)(n) polymorphism and compared T(4) doses among patients having zero (5/6 and 6/6 genotypes), one (6/7 genotype), or two (7/7 and 7/8 genotypes) copies of the low-expression (TA) 7 and (TA) 8 alleles. A significant trend for decreasing T(4) dose with increasing number of copies of (TA)(7) and (TA)(8) (P = 0.037) and significant difference in T(4) dose across the UGT1A1-53(TA)(n) genotypes (P = 0.048) were observed, despite considerable overlap of T(4) doses among different genotypes. These results are consistent with reduced T(4) glucuronidation in patients with low-expression (TA) 7 and (TA) 8 alleles and provide the first evidence for association between UGT1A1-53(TA)(n) and T(4)-dose requirement for thyroid-stimulating hormone suppression in a natural clinical setting. Pharmacogenetics and Genomics 21: 341-343 (C) 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins. Pharmacogenetics and Genomics 2011, 21: 341-343
Resumo:
After the transition from in utero to newborn life, the neonate becomes solely reliant upon its own drug clearance processes to metabolise xenobiotics. Whilst most studies of neonatal hepatic drug elimination have focussed upon in vitro expression and activities of drug-metabolising enzymes, the rapid physiological changes in the early neonatal period of life also need to be considered. There are dramatic changes in neonatal liver blood how and hepatic oxygenation due to the loss of the umbilical blood supply, the increasing portal vein blood flow, and the gradual closure of the ductus venosus shunt during the first week of life. These changes which may well affect the capacity of neonatal hepatic drug metabolism. The hepatic expression of cytochromes P450 1A2, 2C, 2D6, 2E1 and 3A4 develop at different rates in the postnatal period, whilst 3A7 expression diminishes. Hepatic glucuronidation in the human neonate is relatively immature at birth, which contrasts with the considerably more mature neonatal hepatic sulfation activity. Limited in vivo studies show that the human neonate can significantly metabolise xenobiotics but clearance is considerably less compared with the older infant and adult. The neonatal population included in pharmacological studies is highly heterogeneous with respect to age, body weight, ductus venosus closure and disease processes, making it difficult to interpret data arising from human neonatal studies. Studies in the perfused foetal and neonatal sheep liver have demonstrated how the oxidative and conjugative hepatic elimination of drugs by the intact organ is significantly increased during the first week of life, highlighting that future studies will need to consider the profound physiological changes that may influence neonatal hepatic drug elimination shortly after birth.
Resumo:
This paper presents the multi-threading and internet message communication capabilities of Qu-Prolog. Message addresses are symbolic and the communications package provides high-level support that completely hides details of IP addresses and port numbers as well as the underlying TCP/IP transport layer. The combination of the multi-threads and the high level inter-thread message communications provide simple, powerful support for implementing internet distributed intelligent applications.
Resumo:
A new strategy has been developed for the rapid synthesis of peptide para-nitroanilides (pNA). The method involves derivatization of commercially available tritylchloride resin (TCP-resin) with 1,4-phenylenediamine, subsequent coupling with desired amino acids by the standard Fmoc protocol, and oxidation of the intermediate para-aminoanilides (pAA) with Oxone(R). This procedure allows easy assembly of the desired para-aminoanilides (pAA) on standard resin and efficient oxidation and purification of the corresponding para-nitroanilides (pNA). The method allows easy access to any desired peptide para-nitroanilides, which are useful substrates for the characterization and study of proteolytic enzymes.