392 resultados para proteinase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclophilins are a family of ubiquitous proteins that are the intracellular target of the immunosuppressant drug cyclosporin A. Although cyclophilins catalyze peptidylprolyl cis-trans isomerization in vitro, it has remained open whether they also perform this function in vivo. Here we show that Cpr3p, a cyclophilin in the matrix of yeast mitochondria, accelerates the refolding of a fusion protein that was synthesized in a reticulocyte lysate and imported into the matrix of isolated yeast mitochondria. The fusion protein consisted of the matrix-targeting sequence of subunit 9 of F1F0-ATPase fused to mouse dihydrofolate reductase. Refolding of the dihydrofolate reductase moiety in the matrix was monitored by acquisition of resistance to proteinase K. The rate of refolding was reduced by a factor of 2-6 by 2.5 microM cyclosporin A. This reduced rate of folding was also observed with mitochondria lacking Cpr3p. In these mitochondria, protein folding was insensitive to cyclosporin A. The rate of protein import was not affected by cyclosporin A or by deletion of Cpr3p.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jasmonic acid, synthesized from linolenic acid (the octadecanoid pathway), has been proposed to be part of a signal transduction pathway that mediates the induction of defensive genes in plants in response to oligouronide and polypeptide signals generated by insect and pathogen attacks. We report here that the induction of proteinase inhibitor accumulation in tomato leaves by plant-derived oligogalacturonides and fungal-derived chitosan oligosaccharides is severely reduced by two inhibitors (salicylic acid and diethyldi-thiocarbamic acid) of the octadecanoid pathway, supporting a role for the pathway in signaling by oligosaccharides. Jasmonic acid levels in leaves of tomato plants increased several fold within 2 hr after supplying the polypeptide systemin, oligogalacturonides, or chitosan to the plants through their cut stems, as expected if they utilize the octadecanoid pathway. The time course of jasmonic acid accumulation in tomato leaves in response to wounding was consistent with its proposed role in signaling proteinase inhibitor mRNA and protein synthesis. The cumulative evidence supports a model for the activation of defensive genes in plants in response to insect and pathogen attacks in which various elicitors generated at the attack sites activate the octadecanoid pathway via different recognition events to induce the expression of defensive genes in local and distal tissues of the plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Intravenous immunoglobulin (IVIG) proved to be an efficient anti-inflammatory treatment for a growing number of neuroinflammatory diseases and protects against the development of experimental autoimmune encephalomyelitis (EAE), a widely used animal model for multiple sclerosis (MS). METHODS The clinical efficacy of IVIG and IVIG-derived F(ab')2 fragments, generated using the streptococcal cysteine proteinase Ide-S, was evaluated in EAE induced by active immunization and by adoptive transfer of myelin-specific T cells. Frequency, phenotype, and functional characteristics of T cell subsets and myeloid cells were determined by flow cytometry. Antibody binding to microbial antigen and cytokine production by innate immune cells was assessed by ELISA. RESULTS We report that the protective effect of IVIG is lost in the adoptive transfer model of EAE and requires prophylactic administration during disease induction. IVIG-derived Fc fragments are not required for protection against EAE, since administration of F(ab')2 fragments fully recapitulated the clinical efficacy of IVIG. F(ab')2-treated mice showed a substantial decrease in splenic effector T cell expansion and cytokine production (GM-CSF, IFN-γ, IL-17A) 9 days after immunization. Inhibition of effector T cell responses was not associated with an increase in total numbers of Tregs but with decreased activation of innate myeloid cells such as neutrophils, monocytes, and dendritic cells. Therapeutically effective IVIG-derived F(ab')2 fragments inhibited adjuvant-induced innate immune cell activation as determined by IL-12/23 p40 production and recognized mycobacterial antigens contained in Freund's complete adjuvant which is required for induction of active EAE. CONCLUSIONS Our data indicate that F(ab')2-mediated neutralization of adjuvant contributes to the therapeutic efficacy of anti-inflammatory IgG. These findings might partly explain the discrepancy of IVIG efficacy in EAE and MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SFTI-1 is a bicyclic 14 amino acid peptide that was originally isolated from the seeds of the sunflower Helianthus annuus. It is a potent inhibitor of trypsin, with a sub-nanomolar K, value and is homologous to the active site region of the well-known family of serine protease inhibitors known as the Bowman-Birk trypsin inhibitors. It has a cyclic backbone that is cross-braced by a single disulfide bridge and a network of hydrogen bonds that result in a well-defined structure. SFTI-1 is amenable to chemical synthesis, allowing for the creation of synthetic variants. Alterations to the structure such as linearising the backbone or removing the disulfide bridge do not reduce the potency of SFTI-1 significantly, and minimising the peptide to as few as nine residues results in only a small decrease in reactivity. The creation of linear variants of SFTI-1 also provides a tool for investigating putative linear precursor peptides. The mechanism of biosynthesis of SFTI-1 is not yet known but it seems likely that it is a gene-coded product that has arisen from a precursor protein that may be evolutionarily related to classic Bowman-Birk inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The alpha-defensin antimicrobial peptide family is defined by a unique tridisulfide array. To test whether this invariant structural feature determines alpha-defensin bactericidal activity, mouse cryptdin-4 (Crp4) tertiary structure was disrupted by pairs of site-directed Ala for Cys substitutions. In a series of Crp4 disulfide variants whose cysteine connectivities were confirmed using NMR spectroscopy and mass spectrometry, mutagenesis did not induce loss of function. To the contrary, the in vitro bactericidal activities of several Crp4 disulfide variants were equivalent to or greater than those of native Crp4. Mouse Paneth cell alpha-defensins require the proteolytic activation of precursors by matrix metalloproteinase-7 (MMP-7), prompting an analysis of the relative sensitivities of native and mutant Crp4 and proCrp4 molecules to degradation by MMP-7. Although native Crp4 and the alpha-defensin moiety of proCrp4 resisted proteolysis completely, all disulfide variants were degraded extensively by MMP-7. Crp4 bactericidal activity was eliminated by MMP-7 cleavage. Thus, rather than determining alpha-defensin bactericidal activity, the Crp4 disulfide arrangement confers essential protection from degradation by this critical activating proteinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

West Nile Virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection causes severe neurological disease and fatalities in both human and animal hosts. The West Nile viral protease (NS2B-NS3) is essential for post-translational processing in host-infected cells of a viral polypeptide precursor into structural and functional viral proteins, and its inhibition could represent a potential treatment for viral infections. This article describes the design, expression, and enzymatic characterization of a catalytically active recombinant WNV protease, consisting of a 40-residue component of cofactor NS2B tethered via a noncleavable nonapeptide (G(4)SG(4)) to the N-terminal 184 residues of NS3. A chromogenic assay using synthetic para-nitroanilide (pNA) hexapeptide substrates was used to identify optimal enzyme-processing conditions (pH 9.5, I < 0.1 M, 30% glycerol, 1 mM CHAPS), preferred substrate cleavage sites, and the first competitive inhibitor (Ac-FASGKR- H, IC50 &SIM; 1 μM). A putative three-dimensional structure of WNV protease, created through homology modeling based on the crystal structures of Dengue-2 and Hepatitis C NS3 viral proteases, provides some valuable insights for structure-based design of potent and selective inhibitors of WNV protease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof 1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof 1 SH3 domain and counteracting its inhibitory effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) are widely distributed in human airways. They couple to G-proteins and are activated after proteolytic cleavage of the N terminus of the receptor. Evidence is growing that PAR subtype 2 plays a pivotal role in inflammatory airway diseases, such as allergic asthma or bronchitis. However, nothing is known about the effects of PAR-2 on electrolyte transport in the native airways. PAR-2 is expressed in airway epithelial cells, where they are activated by mast cell tryptase, neutrophil proteinase 3, or trypsin. Recent studies produced conflicting results about the functional consequence of PAR-2 stimulation. Here we report that stimulation of PAR-2 receptors in mouse and human airways leads to a change in electrolyte transport and a shift from absorption to secretion. Although PAR-2 appears to be expressed on both sides of the epithelium, only basolateral stimulation results in inhibition of amiloride sensitive Na+ conductance and stimulation of both luminal Cl- channels and basolateral K+ channels. The present data indicate that these changes occur through activation of phospholipase C and increase in intracellular Ca2+, which activates basolateral SK4 K+ channels and luminal Ca2+-dependent Cl- channels. In addition, the present data suggest a PAR-2 mediated release of prostaglandin E2, which may contribute to the secretory response. In conclusion, these results provide further evidence for a role of PAR-2 in inflammatory airway disease: stimulation of these receptors may cause accumulation of airway surface liquid, which, however, may help to flush noxious stimuli away from the affected airways. ©2005 FASEB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flavivirus West Nile virus (WNV) has spread rapidly throughout the world in recent years causing fever, meningitis, encephalitis, and fatalities. Because the viral protease NS2B/NS3 is essential for replication, it is attracting attention as a potential therapeutic target, although there are currently no antiviral inhibitors for any flavivirus. This paper focuses on elucidating interactions between a hexapeptide substrate (Ae-KPGLKR-p-nitroanilide) and residues at S1 and S2 in the active site of WNV protease by comparing the catalytic activities of selected mutant recombinant proteases in vitro. Homology modeling enabled the predictions of key mutations in VWNV NS3 protease at S1 (V115A/F, D129A/ E/N, S135A, Y150A/F, S160A, and S163A) and S2 (N152A) that might influence substrate recognition and catalytic efficiency. Key conclusions are that the substrate P1 Arg strongly interacts with S1 residues Asp-129, Tyr-150, and Ser-163 and, to a lesser extent, Ser-160, and P2 Lys makes an essential interaction with Asn-152 at S2. The inferred substrate-enzyme interactions provide a basis for rational protease inhibitor design and optimization. High sequence conservation within flavivirus proteases means that this study may also be relevant to design of protease inhibitors for other flavivirus proteases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three distinct isolates of Candida albicans were used to establish systemic and oral infections in inbred mice that are genetically resistant or susceptible to tissue damage. Patterns of infection differed significantly between both yeasts and mouse strains. Systemic infection conferred significant protection against re-challenge with the homologous, but not the heterologous yeast; however, the protective effect was more evident in the tissue-susceptible CBA/CaH mice than in the resistant BALB/c strain. In contrast, oral infection induced protection against both homologous and heterologous oral challenge, although this was significant only in the CBA/CaH mice. CBA/CaH mice produced antibodies of both IgG1 and IgG2a subclasses, whereas BALB/c mice produced predominantly IgG1. Western blotting demonstrated considerable differences between epitopes recognised by serum antibodies from mice of both strains after immunisation with each of the three yeasts. Thus, different strains of yeast show considerable specificity in antibody responses elicited by either systemic or oral infection. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Venom from the Australian elapid Pseudonaja textilis (Common or Eastern Brown snake), is the second most toxic snake venom known and is the most common cause of death from snake bite in Australia. This venom is known to contain a prothrombin activator complex, serine proteinase inhibitors, various phospholipase A(2)s, and pre-and postsynaptic neurotoxins. In this study, we performed a proteomic identification of the venom using two- dimensional gel electrophoresis, mass spectrometry, and de novo peptide sequencing. We identified most of the venom proteins including proteins previously not known to be present in the venom. In addition, we used immunoblotting and post-translational modification-specific enzyme stains and antibodies that reveal the complexity and regional diversity of the venom. Modifications observed include phosphorylation, gamma-carboxylation, and glycosylation. Glycoproteins were further characterized by enzymatic deglycosylation and by lectin binding specificity. The venom contains an abundance of glycoproteins with N-linked sugars that include glucose/mannose, N-acetylgalactosamine, N-acetylglucosamine, and sialic acids. Additionally there are multiple isoforms of mammalian coagulation factors that comprise a significant proportion of the venom. Indeed two of the identified proteins, a procoagulant and a plasmin inhibitor, are currently in development as human therapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To rapidly quantify hepatitis B virus (HBV) DNA by real-time PCR using efficient TaqMan probe and extraction methods of virus DNA. Methods: Three standards were prepared by cloning PCR products which targeted S, C and X region of HBV genome into pGEM-T vector respectively. A pair of primers and matched TaqMan probe were selected by comparing the copy number and the Ct values of HBV serum samples derived from the three different standard curves using certain serum DNA. Then the efficiency of six HBV DNA extraction methods including guanidinium isothiocyanate, proteinase K, NaI, NaOH lysis, alkaline lysis and simple boiling was analyzed in sample A, B and C by real-time PCR. Meanwhile, 8 clinical HBV serum samples were quantified. Results: The copy number of the same HBV serum sample originated from the standard curve of S, C and X regions was 5.7 × 104/ mL, 6.3 × 102/mL and 1.6 × 103/mL respectively. The relative Ct value was 26.6, 31.8 and 29.5 respectively. Therefore, primers and matched probe from S region were chosen for further optimization of six extraction methods. The copy number of HBV serum samples A, B and C was 3.49 × 109/mL, 2.08 × 106/mL and 4.40 × 107/mL respectively, the relative Ct value was 19.9, 30 and 26.2 in the method of NaOH lysis, which was the efficientest among six methods. Simple boiling showed a slightly lower efficiency than NaOH lysis. Guanidinium isothiocyanate, proteinase K and NaI displayed that the copy number of HBV serum sample A, B and C was around 105/ mL, meanwhile the Ct value was about 30. Alkaline failed to quantify the copy number of three HBV serum samples, Standard deviation (SD) and coefficient variation (CV) were very low in all 8 clinical HBV serum samples, showing that quantification of HBV DNA in triplicate was reliable and accurate. Conclusion: Real-time PCR based on optimized primers and TaqMan probe from S region in combination with NaOH lysis is a simple, rapid and accurate method for quantification of HBV serum DNA. © 2006 The WJG Press. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: To investigate multiple techniques for the preparation of solid tissue for polymerase chain reaction (PCR) analysis, and to identify the most simple techniques for routine use in the laboratory. METHODS: Techniques for the preparation of arterial tissue samples including homogenisation, ultrafiltration, and treatments involving proteinase K, Gene Clean, lectin, and Fe3+ specific chelators were evaluated using the PCR to amplify both Chlamydia pneumoniae and human DNA. RESULTS: Treatment with either Gene-Clean or lectin and the Fe3+ specific chelator deferoxamine mesylate removed PCR inhibitors from tissue homogenates. Homogenisation followed by GeneClean treatment resulted in the amplification of C pneumoniae DNA from within a section of atherosclerotic carotid artery, implying that C pneumoniae elementary bodies had been disrupted. In eight further clinical samples from patients not known to have C pneumoniae infection, human DNA was amplified and no cross contamination was observed between samples. These samples contained no evidence of C pneumoniae by PCR. CONCLUSIONS: A simple preparation of solid tissue for PCR analysis, involving homogenisation followed by GeneClean treatment has been developed, and is effective for the amplification of both C pneumoniae and human DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saprolegia ssp. effectively utilized the protein casein as a sole source of carbon, nitrogen and sulphur, indicating considerable proteolytic activity. In the presence of a more simple carbon source such as glucose, which was readily assimilated, catabolite repression was not observed and casein exploitation was enhanced. Free proteinase activity was not detected by a number of methods, irrespective of culture conditions. However, clearing by mycelia of skimmed milk agar or agar amended with bacteria demonstrated a close association between proteinases and hyphae, suggestive of natural immobilization of proteinases. Casein breakdown was accompanied by release of individual amino acids and ammonia. The latter, indicative of amino acid assimilation and metabolism, was also associated with an increase in pH of culture medium. Single amino acids did not support growth of Saprolegnia but in combination with other amino acids, methionine encouraged greatest biomass production. Certain groupings of amino acids affected growth in a manner which departed from that expected, as assessed by multifactorial analysis of variance, and either enhanced or reduced growth.