956 resultados para potassium chlorides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents a systematic analysis and interpretation of autonomous underwater vehicle-based microbathymetry combined with remotely operated vehicle (ROV) video recordings, rock analyses and temperaturemeasurements within the PACManus hydrothermal area located on Pual Ridge in the Bismarck Sea of eastern Manus Basin. The data obtained during research cruise Magellan-06 and So-216 provides a framework for understanding the relationship between the volcanism, tectonismand hydrothermal activity. PACManus is a submarine felsic vocanically-hosted hydrothermal area that hosts multiple vent fields locatedwithin several hundredmeters of one another but with different fluid chemistries, vent temperatures and morphologies. The total area of hydrothermal activity is estimated to be 20,279m**2. Themicrobathymetrymaps combinedwith the ROV video observations allow for precise high-resolution mapping estimates of the areal extents of hydrothermal activity.We find the distribution of hydrothermal fields in the PACManus area is primarily controlled by volcanic features that include lava domes, thick andmassive blocky lava flows, breccias and feeder dykes. Spatial variation in the permeability of local volcanic facies appears to control the distribution of venting within a field.We define a three-stage chronological sequence for the volcanic evolution of the PACManus based on lava flow morphology, sediment cover and lava SiO2 concentration. In Stage-1, sparsely to moderately porphyritic dacite lavas (68-69.8 wt.% SiO2) erupted to form domes or cryptodomes. In Stage-2, aphyric lava with slightly lower SiO2 concentrations (67.2-67.9 wt.% SiO2) formed jumbled and pillowed lava flows. In the most recent phase Stage-3, massive blocky lavaswith 69 to 72.5wt.% SiO2were erupted throughmultiple vents constructing a volcanic ridge identified as the PACManus neovolcanic zone. The transition between these stages may be gradual and related to progressive heating of a silicic magma following a recharge event of hot, mantle-derived melts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two distinct hydrogeochemical regimes currently dominate the Peruvian continental margin. One, in shallower water (150-450 m) shelf to upper-slope regions, is characterized by interstitial waters with strong positive chloride gradients with depth. The maximum measured value of 1043 mM chloride at Site 680 at ITS corresponds to a degree of seawater evaporation of ~2 times. Major ion chemistry and strontioum isotopic composition of the interstitial waters suggest that a subsurface brine that has a marine origin and is of pre-early Miocene "age," profoundly influences the chemistry and diagenesis of this shelf environment. Site 684 at ~9°S must be closest to the source of this brine, which becomes diluted with seawater and/or interstitial water as it flows southward toward Site 686 at ~13?S (and probably beyond) at a rate of approximately 3 to 4 cm/yr, since early Miocene time. The other regime, in deep water (3000-5000 m) middle to lower-slope regions, is characterized by interstitial waters with steep negative and nonsteady-state chloride gradients with depth. The minimum measured value of 454 mM chloride, at Site 683 at ITS, corresponds to ~20% dilution of seawater chloride The most probably sources of these low-chloride fluids are gas hydrate dissociation and mineral (particularly clay) dehydration reactions. Fluid advection is consistent with (1) the extent of dilution shown in the chloride profiles, (2) the striking nonsteady-state depth profiles of chlorides at Sites 683 and 688 and of 87Sr/86Sr ratios at Site 685, and (3) the temperatures resulting from an average geothermal gradient of 50°C/km and required for clay mineral dehydration reactions. Strontium isotope data reveal two separate fluid regimes in this slope region: a more northerly one at Sites 683 and 685 that is influenced by fluids with a radiogenic continental strontium signature, and a southerly one at Sites 682 and 688 that is influenced by fluids with a nonradiogenic oceanic signatures. Stratigraphically controlled fluid migration seems to prevail in this margin. Because of its special tectonic setting, Site 679 at ITS is geochemically distinct. The interstitial waters are characterized by seawater chloride concentrations to -200 mbsf and deeper by a significantly lower chloride concentration of about two-thirds of the value in seawater, suggesting mixing with a meteoric water source. Regardless of the hydrogeochemical regime, the chemistry and isotopic compositions of the interstitial waters at all sites are markedly modified by diagenesis, particularly by calcite and dolomite crystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The northward extent of the influence of the W African monsoon during humid periods of interglacials is subject to investigations highlighting feedback mechanisms, such as vegetation. To detect this regional variation and the climate system acting farther to the north will be the aim of this paper focussing on the Holocene. We present two very high-resolution Holocene sediment records off NW Africa located at 31°N and 27°N. The well-known mid-Holocene climate change from the "African Humid Period" to present arid conditions is well reflected by the terrigenous input in the southern core. In contrast, in the northern core spectral and wavelet analyses indicate a periodic oscillation of about 900 years of the terrigenous input throughout the last 9000 years B.P. We conclude that the W African monsoonal influence characterized by the abrupt climatic change at 5000 years B.P. can be separated from the influence of the N Atlantic climate system reflected by a periodic oscillation throughout the Holocene.