907 resultados para postnatal
Resumo:
Physical examination of the newborn (PEN) was established as part of postnatal care in the late 1960s. The role of discharging babies within the first 72 hours of birth was traditionally undertaken by junior doctors. Currently midwives, nurses, advanced nurse practitioners, and health visitors are being trained to undertake the PEN (NHS Screening Programmes, 2010). However, only a fraction of midwives utilize their acquired skills in clinical practice. A survey by Townsend et al (2004) showed that 2% of babies in England were examined by midwives while 83% were examined by junior doctors.This study aimed to evaluate how well midwives who undertook the PEN course between 2002 and 2005 (n = 40) at a large London University utilized the skills acquired on the course. Questionnaires with a series of open and closed questions were sent out by post followed by phone and email reminders. The eight that responded were midwives. All respondents said they were appropriately trained and felt well prepared for their role to examine babies. However, they felt they were not provided with opportunities to use the skills. Guidelines based on this extended role are available in the workplace but only a few midwives seemed to have negotiated time to implement these and may need greater managerial support for the role.
Resumo:
PURPOSE. Vascular endothelial growth factor (VEGF)-A and placental growth factor (PIGF) are members of a large group of homologous peptides identified as the VEGF family. Although VEGF-A is known to act as a potent angiogenic peptide in the retina, the vasoactive function of PIGF in this tissue is less well defined. This study has sought to elucidate the expression patterns and modulatory role of these growth factors during retinal vascular development and hyaloid regression in the neonatal mouse. METHODS. C57BL6J mice were killed at postnatal days (P)1, P3, P5, P7, P9, and P11. The eyes were enucleated and processed for in situ hybridization and immunocytochemistry and the retinas extracted for total protein or RNA. Separate groups of neonatal mice were also injected intraperitoneally daily from P2 through P9 with either VEGF-neutralizing antibody, PIGF-neutralizing antibody, isotype immunoglobulin (Ig)-G, or phosphate-buffered saline (PBS). The mice were then perfused with fluorescein isothiocyanate (FITC)-dextran, and the eyes were subsequently embedded in paraffin wax or flat mounted. RESULTS. Quantitative (real-time) reverse transcription-polymerase chain reaction (RT-PCR) demonstrated similar expression patterns of VEGF-A and PIGF mRNA during neonatal retinal development, although the fluctuation between time periods was greater overall for VEGF-A. The localization of VEGF-A and PIGF in the retina, as revealed by in situ hybridization and immunohistochemistry, was also similar. Neutralization of VEGF-A caused a significant reduction in the hyaloid and retinal vasculature, whereas PIGF antibody treatment caused a marked persistence of the hyaloid without significantly affecting retinal vascular development. CONCLUSIONS. Although having similar expression patterns in the retina, these growth factors appear to have distinct modulatory influences during normal retinal vascular development and hyaloid regression.
Resumo:
Objective
to explore women's perceptions and experiences of pregnancy and childbirth following birth of a macrosomic infant (birth weight ≥4000 g).
Methods
a qualitative design utilising interviews conducted 13–19 weeks post partum in women's homes. The study was conducted in one Health and Social Care Trust in Northern Ireland between January and September 2010. Participants were identified from a larger cohort of women recruited to a prospective study exploring the impact of physical activity and nutrition on macrosomia. Eleven women who delivered macrosomic infants participated in this phase of the study.
Findings
four overarching themes emerged: preparation for delivery; physical and emotional impact of macrosomia; professional relations and perceptions of macrosomia. Findings highlighted the importance of communication with health professionals in relation to both prediction of macrosomia and decision making about childbirth, and offers further understanding into the physical and emotional impact of having a macrosomic infant on women. Furthermore, there was evidence that beliefs and perceptions relating to macrosomia may influence birth experiences and uptake of health promotion messages.
Key conclusions and implications for practice
this study provides important insight into women's experiences of macrosomia throughout the perinatal period and how they were influenced by previous birth experiences, professional relations and personal perceptions and beliefs about macrosomia. Pregnant women at risk of having a macrosomic infant may require extra support throughout the antenatal period continuing into the postnatal period. Support needs to be tailored to the woman's information needs, with time allocated to explore previous birth experiences, beliefs about macrosomia and options for childbirth.
Resumo:
PURPOSE: The pig eye is similar to the human eye in terms of anatomy, vasculature, and photoreceptor distribution, and therefore provides an attractive animal model for research into retinal disease. The purpose of this study was to characterize retinal histology in the developing and mature pig retina using antibodies to well established retinal cell markers commonly used in rodents.
METHODS: Eyes were enucleated from fetuses in the 9th week of gestation, 1 week old piglets and 6 months old adult animals. Eyeglobes were fixed and cryosectioned. A panel of antibodies to well established retinal markers was employed for immunohistochemistry. Fluorescently labeled secondary antibodies were used for signal detection, and images were acquired by confocal microscopy. Mouse retina at postnatal day (P) 5 was used as a reference for this study to compare progression of histogenesis. Most of the primary antibodies have previously been used on mouse tissue.
RESULTS: Most of the studied markers were detected in midgestation pig retina, and the majority had a similar distribution in pig as in P5 mouse retina. However, rhodopsin immunolabeling was detected in pig retina at midgestation but not in P5 mouse retina. Contrary to findings in all rodents, horizontal cells were Islet1-positive and cones were calbindin-immunoreactive in pig retina, as has also been shown for the primate retina. Recoverin and rhodopsin immunolabeling revealed an increase in the length of photoreceptor segments in 6 months, compared to 1 week old animals.
CONCLUSIONS: Comparison with the published data on human retina revealed similar marker distribution and histogenesis progression in the pig and human retina, supporting the pig as a valuable animal model for studies on retinal disease and repair. Furthermore, this study provides information about the dynamics of retinal histogenesis in the pig and validates a panel of antibodies that reliably detects developing and mature retinal cell phenotypes in the pig retina.
Resumo:
The timing of thyroxine (T4) replacement treatment in congenital hypothyroidism (CH) has been suggested to be important for optimizing cognitive recovery in humans; however this has not been fully established using modern animal models of CH. Consequently, the current studies investigated the ameliorating effects of postnatal T4 treatment on neuropathology and behavior in CH rats. Rat dams were administered methimazole to produce CH offspring, then brain tissue from male CH pups was analyzed to determine the effects of postnatal (P3, P7, P14 and P21) T4 treatment on hippocampal dendritic branching and the expression of nerve growth factor (NGF). Two operant behavioral procedures were employed to confirm and extend previous findings obtained using this model, and to investigate timelines for instigating T4 treatment on improved behavioral outcomes. T4 treatment initiated at P14 was protective of a reduction in dendritic branching in the hippocampus, and initiated at P7 was protective of a reduction of NGF expression in the fimbria of the hippocampus. Induction of CH did not affect the acquisition of simple operant response rules but had a significant effect on the acquisition of complex operant rules subsequently imposed. Furthermore, T4 treatment initiated at P3 protected learning deficits seen following the imposition of complex operant response rules. These findings indicate T4 treatment initiated at P7 is sufficient for the protection of hippocampal NGF expression and dendritic branching but for the protection of complex behavioral abilities T4 treatment is necessary prior to or approximating P3.
Resumo:
Background
Mechanical ventilation is a life-saving intervention for critically ill newborn infants with respiratory failure admitted to a neonatal intensive care unit (NICU). Ventilating newborn infants can be challenging due to small tidal volumes, high breathing frequencies, and the use of uncuffed endotracheal tubes. Mechanical ventilation has several short-term, as well as long-term complications. To prevent complications, weaning from the ventilator is started as soon as possible. Weaning aims to support the transfer from full mechanical ventilation support to spontaneous breathing activity.
Objectives
To assess the efficacy of protocolized versus non-protocolized ventilator weaning for newborn infants in reducing the duration of invasive mechanical ventilation, the duration of weaning, and shortening the NICU and hospital length of stay. To determine efficacy in predefined subgroups including: gestational age and birth weight; type of protocol; and type of protocol delivery. To establish whether protocolized weaning is safe and clinically effective in reducing the duration of mechanical ventilation without increasing the risk of adverse events.
Search methods
We searched the Cochrane Central Register of Controlled trials (CENTRAL; the Cochrane Library; 2015, Issue 7); MEDLINE In-Process and other Non-Indexed Citations and OVID MEDLINE (1950 to 31 July 2015); CINAHL (1982 to 31 July 2015); EMBASE (1988 to 31 July 2015); and Web of Science (1990 to 15 July 2015). We did not restrict language of publication. We contacted authors of studies with a subgroup of newborn infants in their study, and experts in the field regarding this subject. In addition, we searched abstracts from conference proceedings, theses, dissertations, and reference lists of all identified studies for further relevant studies.
Selection criteria
Randomized, quasi-randomized or cluster-randomized controlled trials that compared protocolized with non-protocolized ventilator weaning practices in newborn infants with a gestational age of 24 weeks or more, who were enrolled in the study before the postnatal age of 28 completed days after the expected date of birth.
Data collection and analysis
Four authors, in pairs, independently reviewed titles and abstracts identified by electronic searches. We retrieved full-text versions of potentially relevant studies.
Main results
Our search yielded 1752 records. We removed duplicates (1062) and irrelevant studies (843). We did not find any randomized, quasi-randomized or cluster-randomized controlled trials conducted on weaning from mechanical ventilation in newborn infants. Two randomized controlled trials met the inclusion criteria on type of study and type of intervention, but only included a proportion of newborns. The study authors could not provide data needed for subgroup analysis; we excluded both studies.
Authors' conclusions
Based on the results of this review, there is no evidence to support or refute the superiority or inferiority of weaning by protocol over non-protocol weaning on duration of invasive mechanical ventilation in newborn infants.
Resumo:
Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.
Resumo:
Cardiogenesis is a delicate and complex process that requires the coordination of an intricate network of pathways and the different cell types. Therefore, understanding heart development at the morphogenetic level is an essential requirement to uncover the causes of congenital heart disease and to provide insight for disease therapies. Mouse Cerberus like 2 (Cerl2) has been defined as a Nodal antagonist in the node with an important role in the Left-Right (L/R) axis establishment, at the early embryonic development. As expected, Cerl2 knockout mice (Cerl2-/-) showed multiple laterality defects with associated cardiac failure. In order to identify the endogenous role of Cerl2 during heart formation independent of its described functions in the node, we accurately analyzed animals where laterality defects were not present. We thereby unravel the consequences of Cerl2 lossof- function in the heart, namely increased left ventricular thickness due to hyperplasia of cardiomyocytes and de-regulated expression of cardiac genes. Furthermore, the Cerl2 mutant neonates present impaired cardiac function. Once that the cardiac expression of Cerl2 is mostly observed in the left ventricle until around midgestration, this result suggest a specific regulatory role of Cerl2 during the formation of the left ventricular myoarchitecture. Here, we present two possible molecular mechanisms underlying the cardiac Cerl2 function, the regulation of Cerl2 antagonist in activation of the TGFßs/Nodal/Activin/Smad2 signaling identified by increased Smad2 phosphorilation in Cerl2-/- hearts and the negative feedback between Cerl2 and Wnt/ß-catenin signaling in heart formation. In this work and since embryonic stem cells derived from 129 mice strain is extensively used to produce targeted mutants, we also present echocardiographic reference values to progressive use of juveniles and young adult 129/Sv strain in cardiac studies. In addition, we investigate the cardiac physiology of the surviving Cerl2 mutants in 129/Sv background over time through a follow-up study using echocardiographic analysis. Our results revealed that Cerl2-/- mice are able to improve and maintain the diastolic and most of systolic cardiac physiologic parameters as analyzed until young adult age. Since Cerl2 is no longer expressed in the postnatal heart, we suggest that an intrinsic and compensatory mechanism of adaptation may be active for recovering the decreased cardiac function found in Cerl2 mutant neonates. Altogether, these data highlight the role of Cerl2 during embryonic heart development in mice. Furthermore, we also suggest that Cerl2-/- may be an interesting model to uncover the molecular, cellular and physiological mechanisms behind the improvement of the cardiac function, contributing to the development of therapeutic approaches to treat heart failures.
Resumo:
Tese de doutoramento, Medicina (Pediatria), Universidade de Lisboa, Faculdade de Medicina, 2013
Resumo:
Tese de doutoramento, Medicina (Neurologia), Universidade de Lisboa, Faculdade de Medicina, 2015
Resumo:
Synaptic recruitment of AMPA receptors (AMPARs) represents a key postsynaptic mechanism driving functional development and maturation of glutamatergic synapses. At immature hippocampal synapses, PKA-driven synaptic insertion of GluA4 is the predominant mechanism for synaptic reinforcement. However, the physiological significance and molecular determinants of this developmentally restricted form of plasticity are not known. Here we show that PKA activation leads to insertion of GluA4 to synaptic sites with initially weak or silent AMPAR-mediated transmission. This effect depends on a novel mechanism involving the extreme C-terminal end of GluA4, which interacts with the membrane proximal region of the C-terminal domain to control GluA4 trafficking. In the absence of GluA4, strengthening of AMPAR-mediated transmission during postnatal development was significantly delayed. These data suggest that the GluA4-mediated activation of silent synapses is a critical mechanism facilitating the functional maturation of glutamatergic circuitry during the critical period of experience-dependent fine-tuning.
Resumo:
MicroRNAs (miRNAs) have been shown to play important roles in both brain development and the regulation of adult neural cell functions. However, a systematic analysis of brain miRNA functions has been hindered by a lack of comprehensive information regarding the distribution of miRNAs in neuronal versus glial cells. To address this issue, we performed microarray analyses of miRNA expression in the four principal cell types of the CNS (neurons, astrocytes, oligodendrocytes, and microglia) using primary cultures from postnatal d 1 rat cortex. These analyses revealed that neural miRNA expression is highly cell-type specific, with 116 of the 351 miRNAs examined being differentially expressed fivefold or more across the four cell types. We also demonstrate that individual neuron-enriched or neuron-diminished RNAs had a significant impact on the specification of neuronal phenotype: overexpression of the neuron-enriched miRNAs miR-376a and miR-434 increased the differentiation of neural stem cells into neurons, whereas the opposite effect was observed for the glia-enriched miRNAs miR-223, miR-146a, miR-19, and miR-32. In addition, glia-enriched miRNAs were shown to inhibit aberrant glial expression of neuronal proteins and phenotypes, as exemplified by miR-146a, which inhibited neuroligin 1-dependent synaptogenesis. This study identifies new nervous system functions of specific miRNAs, reveals the global extent to which the brain may use differential miRNA expression to regulate neural cell-type-specific phenotypes, and provides an important data resource that defines the compartmentalization of brain miRNAs across different cell types.
Resumo:
The straightforward anatomical organisation of the developing and mature rat spinal cord was used to determine and interpret the time of appearance and expression patterns of microtubule-associated proteins (MAP) 1b and 2. Immunoblots revealed the presence of MAP1b and 2 in the early embryonic rat spinal cord and confirmed the specificity of the used anti-MAP mouse monoclonal antibodies. The immunocytochemical data demonstrated a rostral-to-caudal and ventral-to-dorsal gradient in the expression of MAP1b/2 within the developing spinal cord. In the matrix layer, MAP1b was found in a distinct radial pattern distributed between the membrana limitans interna and externa between embryonal day (E)12 and E15. Immunostaining for vimentin revealed that this MAP1b pattern was morphologically and topographically different from the radial glial pattern which was present in the matrix layer between E13 and E19. The ventral-to-dorsal developmental gradient of the MAP1b staining in the spinal cord matrix layer indicates a close involvement of MAP1b either in the organisation of the microtubules in the cytoplasmatic extensions of the proliferating neuroblasts or neuroblast mitosis. MAP2 could not be detected in the developing matrix layer. In the mantle and marginal layer, MAP1b was abundantly present between E12 and postnatal day (P)0. After birth, the staining intensity for MAP1b gradually decreased in both layers towards a faint appearance at maturity. The distribution patterns suggest an involvement of MAP1b in the maturation of the motor neurons, the contralaterally and ipsilaterally projecting axons and the ascending and descending long axons of the rat spinal cord. MAP2 was present in the spinal cord grey matter between E12 and maturity, which reflects a role for MAP2 in the development as well as in the maintenance of microtubules. The present description of the expression patterns of MAP1b and 2 in the developing spinal cord suggests important roles of the two proteins in various morphogenetic events. The findings may serve as the basis for future studies on the function of MAP1b and 2 in the development of the central nervous system.
Resumo:
A series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons. Three populations of interneurons immunolabeled for calcium-binding proteins were analyzed quantitatively in 16-day-old rat brain sections. Treated rats showed specific reduction in parvalbumin immunoreactivity in the anterior cingulate cortex, but not for calbindin and calretinin. These results provide experimental evidence for the critical role of redox regulation in cortical development and validate this animal model used in schizophrenia research.
Resumo:
Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.